BACKGROUND Embryonic stem cells(ESCs)serve as a crucial ex vivo model,representing epiblast cells derived from the inner cell mass of blastocyst-stage embryos.ESCs exhibit a unique combination of self-renewal potency,...BACKGROUND Embryonic stem cells(ESCs)serve as a crucial ex vivo model,representing epiblast cells derived from the inner cell mass of blastocyst-stage embryos.ESCs exhibit a unique combination of self-renewal potency,unlimited proliferation,and pluripotency.The latter is evident by the ability of the isolated cells to differ-entiate spontaneously into multiple cell lineages,representing the three primary embryonic germ layers.Multiple regulatory networks guide ESCs,directing their self-renewal and lineage-specific differentiation.Apoptosis,or programmed cell death,emerges as a key event involved in sculpting and forming various organs and structures ensuring proper embryonic development.How-ever,the molecular mechanisms underlying the dynamic interplay between diffe-rentiation and apoptosis remain poorly understood.AIM To investigate the regulatory impact of apoptosis on the early differentiation of ESCs into cardiac cells,using mouse ESC(mESC)models-mESC-B-cell lym-phoma 2(BCL-2),mESC-PIM-2,and mESC-metallothionein-1(MET-1)-which overexpress the anti-apoptotic genes Bcl-2,Pim-2,and Met-1,respectively.METHODS mESC-T2(wild-type),mESC-BCL-2,mESC-PIM-2,and mESC-MET-1 have been used to assess the effect of potentiated apoptotic signals on cardiac differentiation.The hanging drop method was adopted to generate embryoid bodies(EBs)and induce terminal differentiation of mESCs.The size of the generated EBs was measured in each condition compared to the wild type.At the functional level,the percentage of cardiac differentiation was measured by calculating the number of beating cardiomyocytes in the manipulated mESCs compared to the control.At the molecular level,quantitative reverse transcription-polymerase chain reaction was used to assess the mRNA expression of three cardiac markers:Troponin T,GATA4,and NKX2.5.Additionally,troponin T protein expression was evaluated through immunofluorescence and western blot assays.RESULTS Our findings showed that the upregulation of Bcl-2,Pim-2,and Met-1 genes led to a reduction in the size of the EBs derived from the manipulated mESCs,in comparison with their wild-type counterpart.Additionally,a decrease in the count of beating cardiomyocytes among differentiated cells was observed.Furthermore,the mRNA expression of three cardiac markers-troponin T,GATA4,and NKX2.5-was diminished in mESCs overexpressing the three anti-apoptotic genes compared to the control cell line.Moreover,the overexpression of the anti-apoptotic genes resulted in a reduction in troponin T protein expression.CONCLUSION Our findings revealed that the upregulation of Bcl-2,Pim-2,and Met-1 genes altered cardiac differentiation,providing insight into the intricate interplay between apoptosis and ESC fate determination.展开更多
Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible ...Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.展开更多
Objective To invest the efficient method which can culture and induce embryonic stem cells to neuroeyte in vitro. Methods Isolate the blastula o f 3.5 d from BALB/c species mouse. Culture the cells from inner cell ma...Objective To invest the efficient method which can culture and induce embryonic stem cells to neuroeyte in vitro. Methods Isolate the blastula o f 3.5 d from BALB/c species mouse. Culture the cells from inner cell mass (inner cell mass, ICM) which were isolated by mechanical method on the mouse embryonic fibroblaste cell (MEF) feeder layer or 0.1% gelatin coated dishes. The stem ceils were identified by characterized morphology, alkaline phosphatase stain, differential potency in vivo and immunoehemistry stain. The isolated cells were differentiated by serial induction method that mimicking the intrinsic developmental process of the neural system. Results The isolated cells were positive for alkaline phosphatatse and SSEA-1 ( stage specific embryonic antigen 1 ). Moreover they were identified pluripotent by differentiation in vivo. Therefore the isolated ceils presented the characters of ESCs. Then the isolated cells were able to differentiate into neuroeytes in vitro. Conclusion Mouse embryonic stem ceils isolation, culture and differentiation system has been established.展开更多
BACKGROUND Cardiovascular disease is the leading cause of death worldwide.Tissue repair after pathological injury in the heart remains a major challenge due to the limited regenerative ability of cardiomyocytes in adu...BACKGROUND Cardiovascular disease is the leading cause of death worldwide.Tissue repair after pathological injury in the heart remains a major challenge due to the limited regenerative ability of cardiomyocytes in adults.Stem cell-derived cardiomyocytes provide a promising source for the cell transplantation-based treatment of injured hearts.AIM To explore the function and mechanisms of miR-301a in regulating cardiomyocyte differentiation of mouse embryonic stem(mES)cells,and provide experimental evidence for applying miR-301a to the cardiomyocyte differentiation induction from stem cells.METHODS mES cells with or without overexpression of miR-301a were applied for all functional assays.The hanging drop technique was applied to form embryoid bodies from mES cells.Cardiac markers including GATA-4,TBX5,MEF2C,andα-actinin were used to determine cardiomyocyte differentiation from mES cells.RESULTS High expression of miR-301a was detected in the heart from late embryonic to neonatal mice.Overexpression of miR-301a in mES cells significantly induced the expression of cardiac transcription factors,thereby promoting cardiomyocyte differentiation and beating cardiomyocyte clone formation.PTEN is a target gene of miR-301a in cardiomyocytes.PTEN-regulated PI3K-AKT-mTOR-Stat3 signaling showed involvement in regulating miR-301a-promoted cardiomyocyte differentiation from mES cells.CONCLUSION MiR-301a is capable of promoting embryonic stem cell differentiation to cardiomyocytes.展开更多
With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Rece...With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches.展开更多
Regulation of cell fate requires the establishment and erasure of 5-methylcytosine(5mC) in genomic DNA.The formation of 5mC is achieved by DNA cytosine methyltransferases(DNMTs),whereas the removal of5mC can be accomp...Regulation of cell fate requires the establishment and erasure of 5-methylcytosine(5mC) in genomic DNA.The formation of 5mC is achieved by DNA cytosine methyltransferases(DNMTs),whereas the removal of5mC can be accomplished by various pathways.Aside from ten-eleven translocation(TET)-mediated oxidation of 5mC followed by thymine DNA glycosylase(TDG)-initiated base excision repair(BER),the direct deformylation of 5-formylcytosine(5fC) and decarboxylation of 5-carboxylcytosine(5caC) have also been discovered as the novel DNA demethylation pathways.Although these novel demethylation pathways have been identified in stem cells and somatic cells,their precise roles in regulating cell fate remain unclear.Here,we differentiate mouse embryonic stem cells(mESCs) into mouse embryoid bodies(mEBs),followed by further differentiation into mouse neural stem cells(mNSCs) and finally into mouse neurons(mNeurons).During this sequential differentiation process,we employ probe molecules,namely2'-fluorinated 5-formylcytidine(F-5fC) and 2'-fluorinated 5-carboxyldeoxycytidine(F-5caC),for metabolic labeling.The results of mass spectrometry(MS) analysis demonstrate the deformylation and decarboxylation activities are progressively decreased and increased respectively during differentiation process,and this opposite demethylation tendency is not associated with DNMTs and TETs.展开更多
By radioreceptor binding studies with iodinated TGF-β1, it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd=130pM, but after the induction of di...By radioreceptor binding studies with iodinated TGF-β1, it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd=130pM, but after the induction of differenti-ation by retinoic acid and dBcAMP, the receptor number of a differentiated RA-ES-5 cell was increased about 80% and the Kd was also increased to 370 pM. Furthermore,more direct evidence supporting the expression of TGF-βtype Ⅰand type Ⅱ receptors in both ES-5 and RA-ES-5 cells has come from dot blot hybridization of cellular mRNA with cDNA probes for type Ⅰ and type Ⅱ recep-tors. Meanwhile, mRNA expression level of types Ⅰ and Ⅱreceptors in RA-ES-5 cells were higher than that in ES-5 cells. Down regulation of TGF-β receptors with a signifi-cant decrease in the rate of cell proliferation in both cells, was found by employing a pretreatment with neutralizing antibody to TGF-β1. The possible role of receptors for TGF-β in cen differentiation is discussed here.展开更多
Human pluripotent stem cells (hPSC) differentiated to retinal pigment epithelial cells (RPE) provide a promising tool for cell replacement therapies of retinal degenerative diseases. The in vitro differentiation of hP...Human pluripotent stem cells (hPSC) differentiated to retinal pigment epithelial cells (RPE) provide a promising tool for cell replacement therapies of retinal degenerative diseases. The in vitro differentiation of hPSC-RPE is still poorly understood and current differentiation protocols rely on spontaneous differentiation on fibroblast feeder cells or as floating cell aggregates in suspension. The fibroblast feeder cells may have an inductive effect on the hPSC-RPE differentiation, providing variable signals mimicking the extraocular mesenchyme that directs the differentiation in vivo. The effect of the commonly used fibroblast feeder cells on the hPSCRPE differentiation was studied by comparing suspension differentiation in standard RPEbasic (no bFGF) medium to RPEbasic medium conditioned with mouse embryonic (mEF-CM) and human foreskin (hFF-CM) fibroblast feeder cells. The fibroblast secreted factors were found to enhance early hPSC-RPE differentiation. The onset of pigmentation was faster in the conditioned media (CM) compared to RPEbasic for both human embryonic (hESC) and induced pluripotent (iPSC) stem cells, with the first pigments appearing around two weeks of differentiation. After four weeks of differentiation, CM conditions consistently contained higher number of pigmented cell aggregates. The ratio of PAX6 and MITF positive cells was quantified to be clearly higher in the CM conditions, with mEFCM containing most positive cells. The mEF cells were found to secrete low levels of activin A growth factor that is known to regulate eye field differentiation. As RPEbasic was supplemented with corresponding, low level (10 ng/ml) of recombinant human activin A, a clear increase in the hPSC-RPE differentiation was achieved. Thus, inductive effect provided by feeder cells was at least partially driven by activin A and could be substituted with a low level of recombinant growth factor in contrasts to previously reported much higher concentrations.展开更多
Transient receptor potential canonical subfamily member 3(TRPC3) is known to be important for neural development and the formation of neuronal networks. Here, we investigated the role of TRPC3 in undifferentiated mous...Transient receptor potential canonical subfamily member 3(TRPC3) is known to be important for neural development and the formation of neuronal networks. Here, we investigated the role of TRPC3 in undifferentiated mouse embryonic stem cells(mESCs) and during the differentiation of mESCs into neurons. CRISPR/Cas9-mediated knockout(KO) of TRPC3 induced apoptosis and the disruption of mitochondrial membrane potential both in undifferentiated mESCs and in those undergoing neural differentiation. In addition, TRPC3 KO impaired the pluripotency of mESCs. TRPC3 KO also dramatically repressed the neural differentiation of mESCs by inhibiting the expression of markers for neural progenitors, neurons, astrocytes and oligodendrocytes.Taken together, our new data demonstrate an important function of TRPC3 with regards to the survival, pluripotency and neural differentiation of mESCs.展开更多
The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and a...The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.展开更多
Sense mutations in several conserved modifiable sites of histone H3 have been found to be strongly correlated with multiple tissuespecific clinical cancers.These clinical site mutants acquire a distinctively new epige...Sense mutations in several conserved modifiable sites of histone H3 have been found to be strongly correlated with multiple tissuespecific clinical cancers.These clinical site mutants acquire a distinctively new epigenetic role and mediate cancer evolution.In this study,we mimicked histone H3 at the 56th lysine(H3K56)mutant incorporation in mouse embryonic stem cells(mESCs)by lentivirus-mediated ectopic expression and analyzed the effects on replication and epigenetic regulation.The data show that two types of H3K56 mutants,namely H3 lysine 56-to-methionine(H3K56M)and H3 lysine 56-to-alanine(H3K56A),promote replication by recruiting more minichromosome maintenance complex component 3 and checkpoint kinase 1 onto chromatin compared with wild-type histone H3 and other site substitution mutants.Under this condition,the frequency of genomic copy number gain in H3K56M and H3K56A cells globally increases,especially in the Mycl1 region,a known molecular marker frequently occurring in multiple malignant cancers.Additionally,we found the disruption of H3K56 acetylation distribution in the copy-gain regions,which indicates a probable epigenetic mechanism of H3K56M and H3K56A.We then identified that H3K56M and H3K56A can trigger a potential adaptation to transcription;genes involved in the mitogen-activated protein kinase pathway are partially upregulated,whereas genes associated with intrinsic apoptotic function show obvious downregulation.The final outcome of ectopic H3K56M and H3K56A incorporation in mESCs is an enhanced ability to form carcinomas.This work indicates that H3K56 site conservation and proper modification play important roles in harmonizing the function of the replication machinery in mESCs.展开更多
Propofol (2, 6-diisopropylphenol) is a general intravenous anesthetic which plays roles in the central neural system by binding GABAA receptors (GABAARs) and enhancing the chloride channels of the neurons.1 Previo...Propofol (2, 6-diisopropylphenol) is a general intravenous anesthetic which plays roles in the central neural system by binding GABAA receptors (GABAARs) and enhancing the chloride channels of the neurons.1 Previous studies mainly focused on the effects of anesthetics on mature neurons, but little attention was paid to their role in early neural differentiation or neural stem cells. Therefore, in the present study, we choose the widely used mouse embryonic cells (ES) cells as the model to investigate the potential effect ofpropofol on neuronal differentiation.展开更多
Nanog is a novel transcription factor specifically expressed in mouse embryonic stem cells (mES cells). It has been reported that Nanog plays an essential role in maintaining multi-potency of ES cells. The expression ...Nanog is a novel transcription factor specifically expressed in mouse embryonic stem cells (mES cells). It has been reported that Nanog plays an essential role in maintaining multi-potency of ES cells. The expression of Nanog is very sensitive to ES cells differentiation, making Nanog one of the best markers to indicate the status of ES cells. In this study, we developed an efficient method to construct Nanog promoter driven EGFP reporter system based on the BAC homologous recombination. We further generated a Nanog-EGFP reporter mES cell line. This reporter mES cell line exhibited features similar to those of normal mES cells, and the EGFP reporter efficiently reflected the expression of Nanog, indi- cating the differentiation status of mES cells. We achieved a reliable experimental reporter system to research self-renewal and differentiation of mES cells. The system could facilitate research on culture system of mES cells and researches on the expression and regulation of Nanog and other related fac- tors in mES cells.展开更多
Salvianolic acid B is isolated from Salvia miltiorrhiza,the root of which is widely used as a traditional Chinese medicine to treat stroke.However,little is known about how salvianolic acid B influences growth charact...Salvianolic acid B is isolated from Salvia miltiorrhiza,the root of which is widely used as a traditional Chinese medicine to treat stroke.However,little is known about how salvianolic acid B influences growth characteristics of neural stem cells (NSCs).The purpose of the present study was to evaluate the effects of salvianolic acid B on proliferation,neurite outgrowth and differentiation of NSCs derived from the cerebral cortex of embryonic mice using MTT,flow cytometry,immunofluorescence and RT-PCR.It was found that 20 μg mL·1 and 40 μg mL·1 salvianolic acid B had similar effects on proliferation of NSCs,and a suitable concentration of salvianolic acid B increased the number of NSCs and their derivative neurospheres.The growth-promoting activity of salvianolic acid B was dependent on and associated with an accumulation in the G2/S-phase cell population.Salvianolic acid B also promoted the neurite outgrowth of NSCs and their differentiation into neurons.The mRNA for tau,GFAP and nestin were present in differentiating neurospheres induced by salvianolic acid B.However,high-level expression of tau mRNA and low-level expression of GFAP mRNA was detected in differentiated cells,in contrast to the control conditions.This collective evidence indicates that exogenous salvianolic acid B is capable of promoting proliferation of neurospheres and differentiation towards the neuronal lineage in vitro and may act in the proliferation of NSCs and may promote NSC differentiation into neuronal cells.展开更多
基金Supported by the National Council for Scientific Research in Lebanon,CNRS-L.
文摘BACKGROUND Embryonic stem cells(ESCs)serve as a crucial ex vivo model,representing epiblast cells derived from the inner cell mass of blastocyst-stage embryos.ESCs exhibit a unique combination of self-renewal potency,unlimited proliferation,and pluripotency.The latter is evident by the ability of the isolated cells to differ-entiate spontaneously into multiple cell lineages,representing the three primary embryonic germ layers.Multiple regulatory networks guide ESCs,directing their self-renewal and lineage-specific differentiation.Apoptosis,or programmed cell death,emerges as a key event involved in sculpting and forming various organs and structures ensuring proper embryonic development.How-ever,the molecular mechanisms underlying the dynamic interplay between diffe-rentiation and apoptosis remain poorly understood.AIM To investigate the regulatory impact of apoptosis on the early differentiation of ESCs into cardiac cells,using mouse ESC(mESC)models-mESC-B-cell lym-phoma 2(BCL-2),mESC-PIM-2,and mESC-metallothionein-1(MET-1)-which overexpress the anti-apoptotic genes Bcl-2,Pim-2,and Met-1,respectively.METHODS mESC-T2(wild-type),mESC-BCL-2,mESC-PIM-2,and mESC-MET-1 have been used to assess the effect of potentiated apoptotic signals on cardiac differentiation.The hanging drop method was adopted to generate embryoid bodies(EBs)and induce terminal differentiation of mESCs.The size of the generated EBs was measured in each condition compared to the wild type.At the functional level,the percentage of cardiac differentiation was measured by calculating the number of beating cardiomyocytes in the manipulated mESCs compared to the control.At the molecular level,quantitative reverse transcription-polymerase chain reaction was used to assess the mRNA expression of three cardiac markers:Troponin T,GATA4,and NKX2.5.Additionally,troponin T protein expression was evaluated through immunofluorescence and western blot assays.RESULTS Our findings showed that the upregulation of Bcl-2,Pim-2,and Met-1 genes led to a reduction in the size of the EBs derived from the manipulated mESCs,in comparison with their wild-type counterpart.Additionally,a decrease in the count of beating cardiomyocytes among differentiated cells was observed.Furthermore,the mRNA expression of three cardiac markers-troponin T,GATA4,and NKX2.5-was diminished in mESCs overexpressing the three anti-apoptotic genes compared to the control cell line.Moreover,the overexpression of the anti-apoptotic genes resulted in a reduction in troponin T protein expression.CONCLUSION Our findings revealed that the upregulation of Bcl-2,Pim-2,and Met-1 genes altered cardiac differentiation,providing insight into the intricate interplay between apoptosis and ESC fate determination.
基金supported by a grant from the National Natural Sciences Foundation of China,No.81030019
文摘Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.
基金This work was supported by China National Programs of High and New Technology Development ( 863 ) ( 2002AA216101 ) National Natural Science Foundation of China (30300110).
文摘Objective To invest the efficient method which can culture and induce embryonic stem cells to neuroeyte in vitro. Methods Isolate the blastula o f 3.5 d from BALB/c species mouse. Culture the cells from inner cell mass (inner cell mass, ICM) which were isolated by mechanical method on the mouse embryonic fibroblaste cell (MEF) feeder layer or 0.1% gelatin coated dishes. The stem ceils were identified by characterized morphology, alkaline phosphatase stain, differential potency in vivo and immunoehemistry stain. The isolated cells were differentiated by serial induction method that mimicking the intrinsic developmental process of the neural system. Results The isolated cells were positive for alkaline phosphatatse and SSEA-1 ( stage specific embryonic antigen 1 ). Moreover they were identified pluripotent by differentiation in vivo. Therefore the isolated ceils presented the characters of ESCs. Then the isolated cells were able to differentiate into neuroeytes in vitro. Conclusion Mouse embryonic stem ceils isolation, culture and differentiation system has been established.
基金Supported by the National Natural Science Foundation of China,No.81800243the Science and Technology Commission of Shanghai Municipality,No.18411965900the Fundamental Research Funds for the Central Universities,No.22120180125
文摘BACKGROUND Cardiovascular disease is the leading cause of death worldwide.Tissue repair after pathological injury in the heart remains a major challenge due to the limited regenerative ability of cardiomyocytes in adults.Stem cell-derived cardiomyocytes provide a promising source for the cell transplantation-based treatment of injured hearts.AIM To explore the function and mechanisms of miR-301a in regulating cardiomyocyte differentiation of mouse embryonic stem(mES)cells,and provide experimental evidence for applying miR-301a to the cardiomyocyte differentiation induction from stem cells.METHODS mES cells with or without overexpression of miR-301a were applied for all functional assays.The hanging drop technique was applied to form embryoid bodies from mES cells.Cardiac markers including GATA-4,TBX5,MEF2C,andα-actinin were used to determine cardiomyocyte differentiation from mES cells.RESULTS High expression of miR-301a was detected in the heart from late embryonic to neonatal mice.Overexpression of miR-301a in mES cells significantly induced the expression of cardiac transcription factors,thereby promoting cardiomyocyte differentiation and beating cardiomyocyte clone formation.PTEN is a target gene of miR-301a in cardiomyocytes.PTEN-regulated PI3K-AKT-mTOR-Stat3 signaling showed involvement in regulating miR-301a-promoted cardiomyocyte differentiation from mES cells.CONCLUSION MiR-301a is capable of promoting embryonic stem cell differentiation to cardiomyocytes.
基金supported by the National Natural Science Foundation of China(3731530048C1202)
文摘With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches.
基金supported by the National Key R&D Program of China (Nos.2022YFC3400700,2022YFA0806600)the National Natural Science Foundation of China (No.22074110)+3 种基金Guangdong Basic and Applied Basic Research Foundation (No.2022A1515110550)Central Public-interest Scientific Institution Basal Research Fund,South China Sea Fisheries Research Institute,CAFS (No.2021TS02)Guangzhou Basic and Applied Basic Research Foundation (No.2023A04J1337)Central Public-interest Scientific Institution Basal Research Fund,CAFS (No.2023TD78)。
文摘Regulation of cell fate requires the establishment and erasure of 5-methylcytosine(5mC) in genomic DNA.The formation of 5mC is achieved by DNA cytosine methyltransferases(DNMTs),whereas the removal of5mC can be accomplished by various pathways.Aside from ten-eleven translocation(TET)-mediated oxidation of 5mC followed by thymine DNA glycosylase(TDG)-initiated base excision repair(BER),the direct deformylation of 5-formylcytosine(5fC) and decarboxylation of 5-carboxylcytosine(5caC) have also been discovered as the novel DNA demethylation pathways.Although these novel demethylation pathways have been identified in stem cells and somatic cells,their precise roles in regulating cell fate remain unclear.Here,we differentiate mouse embryonic stem cells(mESCs) into mouse embryoid bodies(mEBs),followed by further differentiation into mouse neural stem cells(mNSCs) and finally into mouse neurons(mNeurons).During this sequential differentiation process,we employ probe molecules,namely2'-fluorinated 5-formylcytidine(F-5fC) and 2'-fluorinated 5-carboxyldeoxycytidine(F-5caC),for metabolic labeling.The results of mass spectrometry(MS) analysis demonstrate the deformylation and decarboxylation activities are progressively decreased and increased respectively during differentiation process,and this opposite demethylation tendency is not associated with DNMTs and TETs.
文摘By radioreceptor binding studies with iodinated TGF-β1, it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd=130pM, but after the induction of differenti-ation by retinoic acid and dBcAMP, the receptor number of a differentiated RA-ES-5 cell was increased about 80% and the Kd was also increased to 370 pM. Furthermore,more direct evidence supporting the expression of TGF-βtype Ⅰand type Ⅱ receptors in both ES-5 and RA-ES-5 cells has come from dot blot hybridization of cellular mRNA with cDNA probes for type Ⅰ and type Ⅱ recep-tors. Meanwhile, mRNA expression level of types Ⅰ and Ⅱreceptors in RA-ES-5 cells were higher than that in ES-5 cells. Down regulation of TGF-β receptors with a signifi-cant decrease in the rate of cell proliferation in both cells, was found by employing a pretreatment with neutralizing antibody to TGF-β1. The possible role of receptors for TGF-β in cen differentiation is discussed here.
文摘Human pluripotent stem cells (hPSC) differentiated to retinal pigment epithelial cells (RPE) provide a promising tool for cell replacement therapies of retinal degenerative diseases. The in vitro differentiation of hPSC-RPE is still poorly understood and current differentiation protocols rely on spontaneous differentiation on fibroblast feeder cells or as floating cell aggregates in suspension. The fibroblast feeder cells may have an inductive effect on the hPSC-RPE differentiation, providing variable signals mimicking the extraocular mesenchyme that directs the differentiation in vivo. The effect of the commonly used fibroblast feeder cells on the hPSCRPE differentiation was studied by comparing suspension differentiation in standard RPEbasic (no bFGF) medium to RPEbasic medium conditioned with mouse embryonic (mEF-CM) and human foreskin (hFF-CM) fibroblast feeder cells. The fibroblast secreted factors were found to enhance early hPSC-RPE differentiation. The onset of pigmentation was faster in the conditioned media (CM) compared to RPEbasic for both human embryonic (hESC) and induced pluripotent (iPSC) stem cells, with the first pigments appearing around two weeks of differentiation. After four weeks of differentiation, CM conditions consistently contained higher number of pigmented cell aggregates. The ratio of PAX6 and MITF positive cells was quantified to be clearly higher in the CM conditions, with mEFCM containing most positive cells. The mEF cells were found to secrete low levels of activin A growth factor that is known to regulate eye field differentiation. As RPEbasic was supplemented with corresponding, low level (10 ng/ml) of recombinant human activin A, a clear increase in the hPSC-RPE differentiation was achieved. Thus, inductive effect provided by feeder cells was at least partially driven by activin A and could be substituted with a low level of recombinant growth factor in contrasts to previously reported much higher concentrations.
基金supported by the Hong Kong Research Grants Council(RGC)General Research Fund awards(662113,16101714,16100115)the ANR/RGC joint research scheme award(AHKUST601/13)+1 种基金the Hong Kong Theme-based Research Scheme award(T13-706/11-1)the Hong Kong Innovation and Technology Commission(ITCPD/17-9)
文摘Transient receptor potential canonical subfamily member 3(TRPC3) is known to be important for neural development and the formation of neuronal networks. Here, we investigated the role of TRPC3 in undifferentiated mouse embryonic stem cells(mESCs) and during the differentiation of mESCs into neurons. CRISPR/Cas9-mediated knockout(KO) of TRPC3 induced apoptosis and the disruption of mitochondrial membrane potential both in undifferentiated mESCs and in those undergoing neural differentiation. In addition, TRPC3 KO impaired the pluripotency of mESCs. TRPC3 KO also dramatically repressed the neural differentiation of mESCs by inhibiting the expression of markers for neural progenitors, neurons, astrocytes and oligodendrocytes.Taken together, our new data demonstrate an important function of TRPC3 with regards to the survival, pluripotency and neural differentiation of mESCs.
基金supported by the National Institutes of Health through the NIH Roadmap for Nanomedicine (PN2 EY018228)a Research Project Grant R01 EY015417 (YL) ZY was partially supported by a CIRM postdoc fellowship
文摘The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.
基金supported by grants from the National Key Research and Development Program of China(2017YFA0103301)the National Natural Science Foundation of China(81972743)China Postdoctoral Science Foundation(2020M671205).
文摘Sense mutations in several conserved modifiable sites of histone H3 have been found to be strongly correlated with multiple tissuespecific clinical cancers.These clinical site mutants acquire a distinctively new epigenetic role and mediate cancer evolution.In this study,we mimicked histone H3 at the 56th lysine(H3K56)mutant incorporation in mouse embryonic stem cells(mESCs)by lentivirus-mediated ectopic expression and analyzed the effects on replication and epigenetic regulation.The data show that two types of H3K56 mutants,namely H3 lysine 56-to-methionine(H3K56M)and H3 lysine 56-to-alanine(H3K56A),promote replication by recruiting more minichromosome maintenance complex component 3 and checkpoint kinase 1 onto chromatin compared with wild-type histone H3 and other site substitution mutants.Under this condition,the frequency of genomic copy number gain in H3K56M and H3K56A cells globally increases,especially in the Mycl1 region,a known molecular marker frequently occurring in multiple malignant cancers.Additionally,we found the disruption of H3K56 acetylation distribution in the copy-gain regions,which indicates a probable epigenetic mechanism of H3K56M and H3K56A.We then identified that H3K56M and H3K56A can trigger a potential adaptation to transcription;genes involved in the mitogen-activated protein kinase pathway are partially upregulated,whereas genes associated with intrinsic apoptotic function show obvious downregulation.The final outcome of ectopic H3K56M and H3K56A incorporation in mESCs is an enhanced ability to form carcinomas.This work indicates that H3K56 site conservation and proper modification play important roles in harmonizing the function of the replication machinery in mESCs.
文摘Propofol (2, 6-diisopropylphenol) is a general intravenous anesthetic which plays roles in the central neural system by binding GABAA receptors (GABAARs) and enhancing the chloride channels of the neurons.1 Previous studies mainly focused on the effects of anesthetics on mature neurons, but little attention was paid to their role in early neural differentiation or neural stem cells. Therefore, in the present study, we choose the widely used mouse embryonic cells (ES) cells as the model to investigate the potential effect ofpropofol on neuronal differentiation.
基金Supported by the National Natural Science Foundation of China (Grant No. 30421004)
文摘Nanog is a novel transcription factor specifically expressed in mouse embryonic stem cells (mES cells). It has been reported that Nanog plays an essential role in maintaining multi-potency of ES cells. The expression of Nanog is very sensitive to ES cells differentiation, making Nanog one of the best markers to indicate the status of ES cells. In this study, we developed an efficient method to construct Nanog promoter driven EGFP reporter system based on the BAC homologous recombination. We further generated a Nanog-EGFP reporter mES cell line. This reporter mES cell line exhibited features similar to those of normal mES cells, and the EGFP reporter efficiently reflected the expression of Nanog, indi- cating the differentiation status of mES cells. We achieved a reliable experimental reporter system to research self-renewal and differentiation of mES cells. The system could facilitate research on culture system of mES cells and researches on the expression and regulation of Nanog and other related fac- tors in mES cells.
基金supported by the Science & Technology Programe of Guangzhou (Grant No. 2004J1-C0241)the National Basic Research Program of China (Grant No. 2007CB512705)
文摘Salvianolic acid B is isolated from Salvia miltiorrhiza,the root of which is widely used as a traditional Chinese medicine to treat stroke.However,little is known about how salvianolic acid B influences growth characteristics of neural stem cells (NSCs).The purpose of the present study was to evaluate the effects of salvianolic acid B on proliferation,neurite outgrowth and differentiation of NSCs derived from the cerebral cortex of embryonic mice using MTT,flow cytometry,immunofluorescence and RT-PCR.It was found that 20 μg mL·1 and 40 μg mL·1 salvianolic acid B had similar effects on proliferation of NSCs,and a suitable concentration of salvianolic acid B increased the number of NSCs and their derivative neurospheres.The growth-promoting activity of salvianolic acid B was dependent on and associated with an accumulation in the G2/S-phase cell population.Salvianolic acid B also promoted the neurite outgrowth of NSCs and their differentiation into neurons.The mRNA for tau,GFAP and nestin were present in differentiating neurospheres induced by salvianolic acid B.However,high-level expression of tau mRNA and low-level expression of GFAP mRNA was detected in differentiated cells,in contrast to the control conditions.This collective evidence indicates that exogenous salvianolic acid B is capable of promoting proliferation of neurospheres and differentiation towards the neuronal lineage in vitro and may act in the proliferation of NSCs and may promote NSC differentiation into neuronal cells.