Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attr...An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.展开更多
[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among a...[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.展开更多
In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation o...Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.展开更多
The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva...The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.展开更多
The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to...The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.展开更多
An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this pap...An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this paper,which include interval number,real number and uncertain linguistic value.A kind of hybrid multi-attribute decision making method for the single pro- duction process job scheduling is presented in this paper,that the parts are firstly sorted about each factor,and then the total evalu- ative attributive value of each part is calculated with the method of weighted arithmetic average,and thus the part with the highest total evaluative attributive value is chosen for being processed firstly.The mathematic model corresponding to the method is set up in this paper.An example is studied in this paper,and the results of the example testify the correctness of this model.展开更多
A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f...A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procur...A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procurements in China, a multi-attribute pro- curement auction mechanism is presented, where technical and business experts participate in the bid evaluation. Then, the concept of TOPSIS is used to determine the positive and negative ideal points of the WDP according to bid prices, the technical and business experts' evaluation information. Further, the closeness coefficient of each bidder (candidate supplier) is obtained by calculating the distances to the positive and negative ideal points. Thus, the winning supplier can be determined according to the closeness coefficients. Finally, a numerical example is used to illustrate the use of the proposed method.展开更多
To better reflect the psychological behavior characteristics of loss aversion,this paper builds a double reference point decision making method for dynamic multi-attribute decision-making(DMADM)problem,taking bottom-l...To better reflect the psychological behavior characteristics of loss aversion,this paper builds a double reference point decision making method for dynamic multi-attribute decision-making(DMADM)problem,taking bottom-line and target as reference pints.First,the gain/loss function is given,and the state is divided according to the relationship between the gain/loss value and the reference point.Second,the attitude function is constructed based on the results of state division to establish the utility function.Third,the comprehensive utility value is calculated as the basis for alternatives classification and ranking.Finally,the new method is used to evaluate the development level of smart cities.The results show that the new method can judge the degree to which the alternatives meet the requirements of the decision-maker.While the new method can effectively screen out the unsatisfactory alternatives,the ranking results of other alternatives are consistent with those of traditional methods.展开更多
In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute deci...In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute decision-making method is employed to predict the performance of aeroengine, The synthetic weights of interval numbers are obtained by calculating deviation degree and possibility degree. As an example of application, 5 performance parameters monitored on 10 CF6 aeroengines of China Eastern Airlines Co., Ltd are adopted as decision attributes to verify the algorithm. The obtained synthetic ranking result shows the effectiveness and rationality of the proposed method in reflecting the performance stares of aeroengins.展开更多
Probabilistic linguistic term sets(PLTSs)are an effective tool for expressing subjective human cognition that offer advantages in the field ofmulti-attribute decision-making(MADM).However,studies have found that PLTSs...Probabilistic linguistic term sets(PLTSs)are an effective tool for expressing subjective human cognition that offer advantages in the field ofmulti-attribute decision-making(MADM).However,studies have found that PLTSs have lost their ability to accurately capture the views of decision-makers(DMs)in certain circumstances,such as when the DM hesitates between multiple linguistic terms or the decision information is incomplete,thus affecting their role in the decision-making process.Belief function theory is a leading streamof thought in uncertainty processing that is suitable for dealing with the limitations of PLTS.Therefore,the purpose of this study is to extend PLTS to incorporate belief function theory.First,we provide the basic concepts of the extended PLTS(i.e.,belief-based PLTS)through case analyses.Second,the aggregation operator of belief-based PLTS is defined with the ordered weighted average(OWA)-based soft likelihood function,which is improved by considering the reliability of the information source.Third,to measure the magnitude of different belief-based PLTSs,the belief interval of singleton is calculated,and the comparison method of belief-based PLTS is constructed based on probabilities.On the basis of the preceding discussion,we further develop an emergency decision framework that includes several novel techniques,such as attribute weight determination and decision information aggregation.Finally,the usefulness of the framework is demonstrated through a case study,and its effectiveness is illustrated through a series of comparisons.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly know...This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.展开更多
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.
基金Supported by the Science Research and Development Project of Nanning City(201002030B)~~
文摘[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
基金This research was funded by the Humanities and Social Sciences Foundation of Ministry of Education of the Peoples Republic of China(17YJA630115)The recipient of the founding is DX.
文摘Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.
文摘The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.
基金supported by the National Natural Science Foundation of China (70871117 70571086)the Development Foundation of Dalian Naval Academy
文摘The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.
基金Supported by the key project of science and technology plan in the Guangxi Zhuang Autonomous Region China(0630005-8)
文摘An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this paper,which include interval number,real number and uncertain linguistic value.A kind of hybrid multi-attribute decision making method for the single pro- duction process job scheduling is presented in this paper,that the parts are firstly sorted about each factor,and then the total evalu- ative attributive value of each part is calculated with the method of weighted arithmetic average,and thus the part with the highest total evaluative attributive value is chosen for being processed firstly.The mathematic model corresponding to the method is set up in this paper.An example is studied in this paper,and the results of the example testify the correctness of this model.
基金This work was supported by the Natural Science Foundation of Liaoning Province(2013020022).
文摘A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金supported by the National Natural Science Foundation of China(7127105171371002+1 种基金71471032)the Fundamental Research Funds for the Central Universities,NEU,China(N140607001)
文摘A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procurements in China, a multi-attribute pro- curement auction mechanism is presented, where technical and business experts participate in the bid evaluation. Then, the concept of TOPSIS is used to determine the positive and negative ideal points of the WDP according to bid prices, the technical and business experts' evaluation information. Further, the closeness coefficient of each bidder (candidate supplier) is obtained by calculating the distances to the positive and negative ideal points. Thus, the winning supplier can be determined according to the closeness coefficients. Finally, a numerical example is used to illustrate the use of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant 62003379Natural Science Foundation of Guangdong Province under Grant 2018A030313317+3 种基金Special Research Project on the Prevention and Control of COVID-19 Epidemic in Colleges and Universities of Guangdong under Grant 2020KZDZX1118Guangzhou Science and Technology Program under Grant 202002030246Research Project and Development Plan for Key Areas of Guangdong Province under Grant 2020B0202080002Guangzhou Key Research Base of Humanities and Social Sciences(Research Center of Agricultural Products Circulation in Guangdong-Hong Kong-Macao Greater Bay Area).
文摘To better reflect the psychological behavior characteristics of loss aversion,this paper builds a double reference point decision making method for dynamic multi-attribute decision-making(DMADM)problem,taking bottom-line and target as reference pints.First,the gain/loss function is given,and the state is divided according to the relationship between the gain/loss value and the reference point.Second,the attitude function is constructed based on the results of state division to establish the utility function.Third,the comprehensive utility value is calculated as the basis for alternatives classification and ranking.Finally,the new method is used to evaluate the development level of smart cities.The results show that the new method can judge the degree to which the alternatives meet the requirements of the decision-maker.While the new method can effectively screen out the unsatisfactory alternatives,the ranking results of other alternatives are consistent with those of traditional methods.
文摘In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute decision-making method is employed to predict the performance of aeroengine, The synthetic weights of interval numbers are obtained by calculating deviation degree and possibility degree. As an example of application, 5 performance parameters monitored on 10 CF6 aeroengines of China Eastern Airlines Co., Ltd are adopted as decision attributes to verify the algorithm. The obtained synthetic ranking result shows the effectiveness and rationality of the proposed method in reflecting the performance stares of aeroengins.
基金supported by National Social Science Foundation of China (Grant No.17ZDA030).
文摘Probabilistic linguistic term sets(PLTSs)are an effective tool for expressing subjective human cognition that offer advantages in the field ofmulti-attribute decision-making(MADM).However,studies have found that PLTSs have lost their ability to accurately capture the views of decision-makers(DMs)in certain circumstances,such as when the DM hesitates between multiple linguistic terms or the decision information is incomplete,thus affecting their role in the decision-making process.Belief function theory is a leading streamof thought in uncertainty processing that is suitable for dealing with the limitations of PLTS.Therefore,the purpose of this study is to extend PLTS to incorporate belief function theory.First,we provide the basic concepts of the extended PLTS(i.e.,belief-based PLTS)through case analyses.Second,the aggregation operator of belief-based PLTS is defined with the ordered weighted average(OWA)-based soft likelihood function,which is improved by considering the reliability of the information source.Third,to measure the magnitude of different belief-based PLTSs,the belief interval of singleton is calculated,and the comparison method of belief-based PLTS is constructed based on probabilities.On the basis of the preceding discussion,we further develop an emergency decision framework that includes several novel techniques,such as attribute weight determination and decision information aggregation.Finally,the usefulness of the framework is demonstrated through a case study,and its effectiveness is illustrated through a series of comparisons.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
基金supported by the National Natural Science Foundation of China (70473037)the Key Project of National Development and Reform Commission (1009-213011)
文摘This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.