期刊文献+
共找到1,311篇文章
< 1 2 66 >
每页显示 20 50 100
Data fusion for fault diagnosis using multi-class Support Vector Machines 被引量:1
1
作者 胡中辉 蔡云泽 +1 位作者 李远贵 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1030-1039,共10页
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine... Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 展开更多
关键词 Data fusion Fault diagnosis multi-class classification multi-class Support Vector Machines Diesel engine
下载PDF
Time varying congestion pricing for multi-class and multi-mode transportation system with asymmetric cost functions
2
作者 钟绍鹏 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期77-82,共6页
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin... This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value. 展开更多
关键词 time varying congestion pricing ASYMMETRIC multi-class MULTI-MODE MULTI-CRITERIA
下载PDF
Fault Diagnosis for Aero-engine Applying a New Multi-class Support Vector Algorithm 被引量:4
3
作者 徐启华 师军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期175-182,共8页
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based... Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises. 展开更多
关键词 support vector machine fault diagnosis multi-class classification
下载PDF
A combined algorithm of K-means and MTRL for multi-class classification 被引量:1
4
作者 XUE Mengfan HAN Lei PENG Dongliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期875-885,共11页
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla... The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset. 展开更多
关键词 machine LEARNING multi-class classification K-MEANS MULTI-TASK RELATIONSHIP LEARNING (MTRL) OVER-FITTING
下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
5
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
下载PDF
Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms 被引量:1
6
作者 Xiao Fei 《Energy and Power Engineering》 2013年第4期561-565,共5页
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav... The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification. 展开更多
关键词 Power Quality DISTURBANCE Classification WAVELET TRANSFORM SVM multi-class ALGORITHMS
下载PDF
Scheduler Algorithm for Multi-Class Switch with Priority Threshold
7
作者 Abdul Aziz Abdul Rahman Kamaruzzaman Seman +2 位作者 Kamarudin Saadan Ahmad Kamsani Samingan Azreen Azman 《International Journal of Communications, Network and System Sciences》 2012年第6期313-320,共8页
The requirement for guaranteed Quality of Service (QoS) have become very essential since there are numerous network base application is available such as video conferencing, data streaming, data transfer and many more... The requirement for guaranteed Quality of Service (QoS) have become very essential since there are numerous network base application is available such as video conferencing, data streaming, data transfer and many more. This has led to the multi-class switch architecture to cater for the needs for different QoS requirements. The introduction of threshold in multi-class switch to solve the starvation problems in loss sensitive class has increased the mean delay for delay sensitive class. In this research, a new scheduling architecture is introduced to improve mean delay in delay sensitive class when the threshold is active. The proposed architecture has been simulated under uniform and non-uniform traffic to show performance of the switch in terms of mean delay. The results show that the proposed architecture has achieved better performance as compared to Weighted Fair Queueing (WFQ) and Priority Queue (PQ). 展开更多
关键词 SCHEDULER PRIORITY Thresholds multi-class Quality of Service (QOS)
下载PDF
Pashto Characters Recognition Using Multi-Class Enabled Support Vector Machine
8
作者 Sulaiman Khan Shah Nazir +1 位作者 Habib Ullah Khan Anwar Hussain 《Computers, Materials & Continua》 SCIE EI 2021年第6期2831-2844,共14页
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang... During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model. 展开更多
关键词 Pashto multi-class support vector machine handwritten characters database ZONING and histogram of oriented gradients
下载PDF
Research on Intrusion Detection Algorithm Based on Multi-Class SVM in Wireless Sensor Networks
9
作者 Hangxia Zhou Qian Liu Chen Cui 《Communications and Network》 2013年第3期524-528,共5页
A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detectio... A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detection, the multi-class method is constructed with Hadamard matrix and two-class Support Vector Machines. In order to minimize the complexity of the algorithm, sparse coding method is applied in this paper. The comprehensive experimental results show that this modified multi-class method has better attack detection rate compared with other three coding algorithms, and its time efficiency is higher than Hadamard coding algorithm. 展开更多
关键词 WIRELESS SENSOR NETWORK multi-class NETWORK SECURITY
下载PDF
基于Multi-class SVM的车辆换道行为识别模型研究 被引量:14
10
作者 陈亮 冯延超 李巧茹 《安全与环境学报》 CAS CSCD 北大核心 2020年第1期193-199,共7页
自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹... 自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。 展开更多
关键词 安全工程 多分类支持向量机 NGSIM数据 车辆换道识别
下载PDF
Predicting Causes of Traffic Road Accidents Using Multi-class Support Vector Machines
11
作者 Elfadil A. Mohamed 《通讯和计算机(中英文版)》 2014年第5期441-447,共7页
关键词 道路交通事故 支持向量机 原因 预测 阿拉伯联合酋长国 多级 数据挖掘技术 肇事车辆
下载PDF
Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny 被引量:1
12
作者 Fu Zhang Zijun Chen +3 位作者 Shaukat Ali Ning Yang Sanling Fu Yakun Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第2期225-231,共7页
The rapid and accurate detection of cherry tomatoes is of great significance to realizing automatic picking by robots.However,so far,cherry tomatoes are detected as only one class for picking.Fruits occluded by branch... The rapid and accurate detection of cherry tomatoes is of great significance to realizing automatic picking by robots.However,so far,cherry tomatoes are detected as only one class for picking.Fruits occluded by branches or leaves are detected as pickable objects,which may cause damage to the plant or robot end-effector during picking.This study proposed the Feature Enhancement Network Block(FENB)based on YOLOv4-Tiny to solve the above problem.Firstly,according to the distribution characteristics and picking strategies of cherry tomatoes,cherry tomatoes were divided into four classes in the nighttime,and daytime included not occluded,occluded by branches,occluded by fruits,and occluded by leaves.Secondly,the CSPNet structure with the hybrid attention mechanism was used to design the FENB,which pays more attention to the effective features of different classes of cherry tomatoes while retaining the original features.Finally,the Feature Enhancement Network(FEN)was constructed based on the FENB to enhance the feature extraction ability and improve the detection accuracy of YOLOv4-Tiny.The experimental results show that under the confidence of 0.5,average precision(AP)of non-occluded,branch-occluded,fruit-occluded,and leaf-occluded fruit over the day test images were 95.86%,92.59%,89.66%,and 84.99%,respectively,which were 98.43%,95.62%,95.50%,and 89.33% on the night test images,respectively.The mean Average Precision(mAP)of four classes over the night test set was higher(94.72%)than that of the day(90.78%),which were both better than YOLOv4 and YOLOv4-Tiny.It cost 32.22 ms to process a 416×416 image on the GPU.The model size was 39.34 MB.Therefore,the proposed model can provide a practical and feasible method for the multi-class detection of cherry tomatoes. 展开更多
关键词 cherry tomatoes deep learning data augmentation YOLOv4 OCCLUSION multi-class detection
原文传递
Learning label-specific features for decomposition-based multi-class classification
13
作者 Bin-Bin JIA Jun-Ying LIU +1 位作者 Jun-Yi HANG Min-Ling ZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第6期101-110,共10页
Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve t... Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve these binary classification problems in the original feature space,while it might be suboptimal as different binary classification problems correspond to different positive and negative examples.In this paper,we propose to learn label-specific features for each decomposed binary classification problem to consider the specific characteristics containing in its positive and negative examples.Specifically,to generate the label-specific features,clustering analysis is respectively conducted on the positive and negative examples in each decomposed binary data set to discover their inherent information and then label-specific features for one example are obtained by measuring the similarity between it and all cluster centers.Experiments clearly validate the effectiveness of learning label-specific features for decomposition-based multi-class classification. 展开更多
关键词 machine learning multi-class classification error-correcting output codes label-specific features
原文传递
Visual abstraction of dynamic network via improved multi-class blue noise sampling
14
作者 Yanni PENG Xiaoping FAN +5 位作者 Rong CHEN Ziyao YU Shi LIU Yunpeng CHEN Ying ZHAO Fangfang ZHOU 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第1期171-185,共15页
Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding o... Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding of time-varying trends of network communications. This study presents a new edge sampling algorithm called edge-based multi-class blue noise (E-MCBN) to reduce visual clutter in MSV. Our main idea is inspired by the multi-class blue noise (MCBN) sampling algorithm, commonly used in multi-class scatterplot decluttering. First, we take a node pair as an edge class, which can be regarded as an analogy to classes in multi-class scatterplots. Second, we propose two indicators, namely, class overlap and inter-class conflict degrees, to measure the overlapping degree and mutual exclusion, respectively, between edge classes. These indicators help construct the foundation of migrating the MCBN sampling from multi-class scatterplots to dynamic network samplings. Finally, we propose three strategies to accelerate MCBN sampling and a partitioning strategy to preserve local high-density edges in the MSV. The result shows that our approach can effectively reduce visual clutters and improve the readability of MSV. Moreover, our approach can also overcome the disadvantages of the MCBN sampling (i.e., long-running and failure to preserve local high-density communication areas in MSV). This study is the first that introduces MCBN sampling into a dynamic network sampling. 展开更多
关键词 dynamic network visualization massive sequence view multi-class blue noise sampling visual abstraction
原文传递
非平衡概念漂移数据流主动学习方法
15
作者 李艳红 王甜甜 +1 位作者 王素格 李德玉 《自动化学报》 EI CAS CSCD 北大核心 2024年第3期589-606,共18页
数据流分类研究在开放、动态环境中如何提供更可靠的数据驱动预测模型,关键在于从实时到达且不断变化的数据流中检测并适应概念漂移.目前,为检测概念漂移和更新分类模型,数据流分类方法通常假设所有样本的标签都是已知的,这一假设在真... 数据流分类研究在开放、动态环境中如何提供更可靠的数据驱动预测模型,关键在于从实时到达且不断变化的数据流中检测并适应概念漂移.目前,为检测概念漂移和更新分类模型,数据流分类方法通常假设所有样本的标签都是已知的,这一假设在真实场景下是不现实的.此外,真实数据流可能表现出较高且不断变化的类不平衡比率,会进一步增加数据流分类任务的复杂性.为此,提出一种非平衡概念漂移数据流主动学习方法 (Active learning method for imbalanced concept drift data stream, ALM-ICDDS).定义基于多预测概率的样本预测确定性度量,提出边缘阈值矩阵的自适应调整方法,使得标签查询策略适用于类别数较多的非平衡数据流;提出基于记忆强度的样本替换策略,将难区分、少数类样本和代表当前数据分布的样本保存在记忆窗口中,提升新基分类器的分类性能;定义基于分类精度的基分类器重要性评价及更新方法,实现漂移后的集成分类器更新.在7个合成数据流和3个真实数据流上的对比实验表明,提出的非平衡概念漂移数据流主动学习方法的分类性能优于6种概念漂移数据流学习方法. 展开更多
关键词 数据流分类 主动学习 概念漂移 多类不平衡
下载PDF
非平衡数据流在线主动学习方法
16
作者 李艳红 任霖 +1 位作者 王素格 李德玉 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1389-1401,共13页
数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主... 数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主动学习方法(Online active learning method for imbalanced data stream,OALM-IDS).AdaBoost是一种将多个弱分类器经过迭代生成强分类器的集成分类方法,AdaBoost.M2引入了弱分类器的置信度,此类方法常用于静态数据.定义了基于非平衡比率和自适应遗忘因子的训练样本重要性度量,从而使AdaBoost.M2方法适用于非平衡数据流,提升了非平衡数据流集成分类器的性能.提出了边际阈值矩阵的自适应调整方法,优化了标签请求策略.将概念漂移程度融入模型构建过程中,定义了基于概念漂移指数的自适应遗忘因子,实现了漂移后的模型重构.在6个人工数据流和4个真实数据流上的对比实验表明,提出的非平衡数据流在线主动学习方法的分类性能优于其他5种非平衡数据流学习方法. 展开更多
关键词 主动学习 数据流分类 多类非平衡 概念漂移
下载PDF
ATIS与收费策略下多用户随机均衡的效率损失
17
作者 张俊婷 朱文龙 +1 位作者 叶顺强 陈华友 《运筹与管理》 CSSCI CSCD 北大核心 2024年第4期147-152,I0046,I0047,共8页
考虑ATIS作用的交通网络,用户具有交通信息接受程度的异质性;进一步,考虑实施道路收费策略情形下,用户具有时间价值的异质性;基于这两类异质性,研究了ATIS下异质性交通网络的效率损失问题。用户对ATIS系统的响应程度,亦即ATIS信息遵从率... 考虑ATIS作用的交通网络,用户具有交通信息接受程度的异质性;进一步,考虑实施道路收费策略情形下,用户具有时间价值的异质性;基于这两类异质性,研究了ATIS下异质性交通网络的效率损失问题。用户对ATIS系统的响应程度,亦即ATIS信息遵从率,是影响ATIS系统运行效率的关键因素。因此,通过ATIS信息遵从率参数的引入,将用户分为不同类型。假设用户均按照随机方式进行择路,建立了基于时间准则与基于费用准则的多用户Logit-随机均衡变分不等式。当系统总出行成本包含收费时,建立了多用户双准则系统最优模型,界定了多用户Logit-随机均衡相对于多用户系统最优的效率损失,推导出效率损失上界;进一步分析了当路段阻抗函数为多项式情形时,引入了自由流出行时间参数,给出了双准则下效率损失上界的解析式,分析了效率损失上界与各参数之间的关系。研究结论表明,双准则下效率损失上界为ATIS信息遵从率的减函数;此外,效率损失上界与路段阻抗函数、用户时间价值及其对路网的熟悉程度、路网本身复杂程度等因素有关。最后,通过算例验证了结论的有效性。 展开更多
关键词 ATIS 道路收费 多用户随机均衡 多用户系统最优 效率损失
下载PDF
MCFNet:融合上下文信息的多尺度视网膜动静脉分类网络
18
作者 崔颖 朱佳 +2 位作者 高山 陈立伟 张广 《应用科技》 CAS 2024年第2期105-111,共7页
针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature... 针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。 展开更多
关键词 多类分割 动静脉分类 视网膜图像 多尺度特征提取 血管分割 全局信息融合 卷积神经网络 深度监督
下载PDF
基于多标签卷积神经网络的结构损伤识别
19
作者 秦世强 苏晟 杨睿 《建筑科学与工程学报》 CAS 北大核心 2024年第3期108-119,共12页
准确识别结构多位置损伤一直是结构损伤识别的难题。为提升结构多位置损伤识别的准确率,提出一种基于卷积神经网络(CNN)的多标签分类(MLC)方法(CNN-MLC)进行结构损伤识别。该方法将结构多个位置损伤识别转换为多标签分类问题,每个损伤... 准确识别结构多位置损伤一直是结构损伤识别的难题。为提升结构多位置损伤识别的准确率,提出一种基于卷积神经网络(CNN)的多标签分类(MLC)方法(CNN-MLC)进行结构损伤识别。该方法将结构多个位置损伤识别转换为多标签分类问题,每个损伤位置均用一个对应的标签表示;利用CNN强大的特征提取能力,深入挖掘不同损伤工况之间公共损伤位置的相关性,实现结构多位置损伤识别。通过四层框架结构和一座铁路连续梁桥多位置损伤识别验证了CNN-MLC方法的识别准确率,并将其识别结果与基于CNN的多类别分类(MCC)方法(CNN-MCC)和基于示例差异化算法(InsDif)的多标签分类方法(InsDif-MLC)进行了对比。结果表明:框架结构在两位置和三位置损伤工况下,CNN-MLC方法比CNN-MCC方法的识别准确率分别提升2.50%和9.64%,比InsDif-MLC方法识别准确率提升17.50%和29.28%;对于铁路连续梁桥的两位置损伤和三位置损伤,CNN-MLC方法比CNN-MCC方法识别准确率提升1.63%和6.85%,比InsDif-MLC方法识别准确率提升4.18%和18.49%;随着损伤位置数量的增加,CNN-MLC方法的识别准确率显著提升。 展开更多
关键词 结构损伤识别 卷积神经网络 多位置损伤 多类别分类 多标签分类
下载PDF
A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation
20
作者 Hao Bai Beiyuan Liu +3 位作者 Hongwen Liu Jupeng Zeng Jian Ouyang Yipeng Liu 《Energy Engineering》 EI 2024年第8期2191-2211,共21页
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o... Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified. 展开更多
关键词 Distribution grid insulation degradation initial insulation fault multi-feature indices multi-class SVM situational level situational awareness
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部