Studies on the relationship between plant nitrogen content and soil nitrogen reduction under elevated CO2 conditions and with different nitrogen additions in wetland ecosystems are lacking. This study was meant to ass...Studies on the relationship between plant nitrogen content and soil nitrogen reduction under elevated CO2 conditions and with different nitrogen additions in wetland ecosystems are lacking. This study was meant to assess the effects of elevated CO2 concentrations and inorganic nitrogen additions on soil and plant nitrogen cycling. A cultured riparian wetland, alligator weeds, and two duplicated open top chambers (OTCs) with ambient (380μmol/mol) and elevated (700 μmol/mol) CO2 concentrations at low (4 mg/L) and high (6 mg/L) nitrogen fertilization levels were used. The total plant biomass increased by 30.77% and 31.37% at low and high nitrogen fertilization levels, respectively, under elevated CO2 conditions. Plant nitrogen content decreased by 6.54% and 8.86% at low and high nitrogen fertilization levels, respectively. The coefficient of determination (R2) of soil nitrogen contents ranged from 0.81 to 0.96. Under elevated CO2 conditions, plants utilized the assimilated inorganic nitrogen (from the soil) for growth and other internal physiological transformations, which might explain the reduction in plant nitrogen content. A reduction in soil dissolved inorganic nitrogen (DIN) under elevated CO2 conditions might have also caused the reduction in plant nitrogen content. Reduced plant and soil nitrogen contents are to be expected due to the potential exhaustive use of inorganic nitrogen by soil microorganisms even before it can be made available to the soil and plants. The results from this study provide important information to help policy makers make informed decisions on sustainable management of wetlands. Larger-scale field work is recommended in future research.展开更多
Translocation of carbohydrate from leaves to roots via phloem and reallocation from roots to leaves via xylem regulate the allocation of carbon (C) between above and belowground organs of trees. To quantitatively an...Translocation of carbohydrate from leaves to roots via phloem and reallocation from roots to leaves via xylem regulate the allocation of carbon (C) between above and belowground organs of trees. To quantitatively analyze effects of elevated ozone concentrations pO3 on the internal cycle of C, juvenile beech and spruce were grown in phytotrons and exposed to ambient and elevated pO3 (i.e. twice-ambient O3 levels, restricted to 〈 150 ppb) for two growing seasons. The translocation of C in the phloem and xylem was quantitatively studied by investigating the phloem/xylem-loading of sugars, the differentiation of stem conductive tissue and the hourly water flow through the stem. Results in the present study shown, elevated pO3 significantly decreased C translocation from shoot to roots in beech by reducing both sugar concentration in the phloem and conductive phloem area. Elevated pO3 also significantly decreased C reallocation from the roots to the shoot in beech by reducing both of sugar concentration in the xylem and transpiration rate. The adverse effects of elevated pO3 on C translocation in the phloem and xylem, however, were small in spruce. Contrasting to beech, spruce is less sensitive to elevated pO3, regarding to phloem differentiation and sugar concentrations in the phloem and xylem.展开更多
The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknow...The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.展开更多
Background: With controlled ovarian hyperstimulation (COH) with gonadotrophin releasing hormone (GnRH) antagonists, sometimes it is associated with incomplete luteolysis leading to elevated serum progesterone in early...Background: With controlled ovarian hyperstimulation (COH) with gonadotrophin releasing hormone (GnRH) antagonists, sometimes it is associated with incomplete luteolysis leading to elevated serum progesterone in early follicular phase. Persistence of this elevation might reduce the chance for clinical pregnancy. Objective: To assess the effect of elevated early and late follicular progesterone (P) levels during gonadotrophins releasing hormone (GnRH) antagonist cycles on pregnancy outcome. Design: Prospective single center study. Setting: North-western Military hospital, Kingdom of Saudi Arabia. Patients: 302 in vitro fertilization/intra-cytoplasmic sperm injection (IVF-ICSI) patients. Intervention(s): Recombinant follicle stimulating hormone (r-FSH), (150 - 300 IU) started daily from cycle day 2;GnRH antagonist treatment started on day 6 of the cycle. The serum progesterone (P) measured twice on cycle day 2 and human chorionic gonadotrophin (hCG) day. Main Outcome Measures: Clinical pregnancy and live birth rates per started cycle. Results: The incidence of elevated serum P on day 2 was (5.3%) and on hCG day was (17.5%), statistically significant differences in clinical pregnancy rate (32.3% versus 13.0%) and in live birth rate (23.4% versus 11.1%) were present between the normal and high serum progesterone groups on hCG day, but these differences were not statistically significant in the groups of elevated basal progesterone. Conclusion: Follicular phase progesterone rise either on day 2 or the day of hCG trigger was associated with lower clinical pregnancy and live birth rates. This impact was more prominent with trigger day elevation.展开更多
山地小气候特征对解释林线位置、形成机制以及生长⁃气候关系具有重要意义。由于高山气象数据匮乏,尤其是土壤水热数据的缺失,使以往对华北地区山地土壤的温湿度变化特征知之甚少。基于5个整年(2012—2016年)的连续监测,分析了华北芦芽...山地小气候特征对解释林线位置、形成机制以及生长⁃气候关系具有重要意义。由于高山气象数据匮乏,尤其是土壤水热数据的缺失,使以往对华北地区山地土壤的温湿度变化特征知之甚少。基于5个整年(2012—2016年)的连续监测,分析了华北芦芽山针叶林分布上下限土壤(10cm)温度和含水量的季节变化特征及差异。结果表明:(1)在芦芽山针叶林分布上限,北坡土壤10月末冻结,5月初解冻,南坡土壤冻结和解冻日均滞后于北坡,生长季内南北坡土壤均温、生长季长度无显著差异(122d,8.1℃和110d,7.6℃);(2)南北坡林线土壤含水量最低值都出现在冬季(1月),最高值则在秋季(10月和9月),并且南坡生长季土壤含水量(0.350 m3/m3)显著大于北坡(0.247 m3/m3);(3)与针叶森林的分布下限(2040 m a.s.l.)相比,林线土壤热量指标(年均温、生长季均温、最热月均温和生长季长度)均明显偏低,而土壤生长季内含水量显著偏大。研究结果揭示了亚高山区土壤冻融过程中温度和含水量的耦合关系,并进一步证实了芦芽山地区针叶树木径向生长在低海拔受干旱胁迫而在高海拔受低温限制。展开更多
针对单频GPS(Global Position System)用户的载波相位周跳探测问题,在传统的载波相位和伪距组合方法的基础上提出了一种新的周跳探测方法.该方法将载波相位和码伪距的组合观测量在历元间做差形成差分序列,以此构造实时的周跳探测量,由...针对单频GPS(Global Position System)用户的载波相位周跳探测问题,在传统的载波相位和伪距组合方法的基础上提出了一种新的周跳探测方法.该方法将载波相位和码伪距的组合观测量在历元间做差形成差分序列,以此构造实时的周跳探测量,由于该探测量易受观测噪声的影响,因此使用仰角指数模型作为经验模型对于测距噪声进行估计,基于假设检验的方法,通过对该探测量是否超过相应的检测门限来判断是否存在周跳.在实测的GPS观测数据基础上,对这一方法进行了验证,结果表明:相对于传统的周跳探测方法,该方法可以更加及时、准确地发现较小的周跳,对于单频的GPS用户具有较好的适应性.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2009B17714)the National Program on Key Basic Research Projects of China(Grant No.2012CB719800)
文摘Studies on the relationship between plant nitrogen content and soil nitrogen reduction under elevated CO2 conditions and with different nitrogen additions in wetland ecosystems are lacking. This study was meant to assess the effects of elevated CO2 concentrations and inorganic nitrogen additions on soil and plant nitrogen cycling. A cultured riparian wetland, alligator weeds, and two duplicated open top chambers (OTCs) with ambient (380μmol/mol) and elevated (700 μmol/mol) CO2 concentrations at low (4 mg/L) and high (6 mg/L) nitrogen fertilization levels were used. The total plant biomass increased by 30.77% and 31.37% at low and high nitrogen fertilization levels, respectively, under elevated CO2 conditions. Plant nitrogen content decreased by 6.54% and 8.86% at low and high nitrogen fertilization levels, respectively. The coefficient of determination (R2) of soil nitrogen contents ranged from 0.81 to 0.96. Under elevated CO2 conditions, plants utilized the assimilated inorganic nitrogen (from the soil) for growth and other internal physiological transformations, which might explain the reduction in plant nitrogen content. A reduction in soil dissolved inorganic nitrogen (DIN) under elevated CO2 conditions might have also caused the reduction in plant nitrogen content. Reduced plant and soil nitrogen contents are to be expected due to the potential exhaustive use of inorganic nitrogen by soil microorganisms even before it can be made available to the soil and plants. The results from this study provide important information to help policy makers make informed decisions on sustainable management of wetlands. Larger-scale field work is recommended in future research.
基金The Deutsche Forschungsgemeinschaft (DFG, SFB 607, part project A2/B5)
文摘Translocation of carbohydrate from leaves to roots via phloem and reallocation from roots to leaves via xylem regulate the allocation of carbon (C) between above and belowground organs of trees. To quantitatively analyze effects of elevated ozone concentrations pO3 on the internal cycle of C, juvenile beech and spruce were grown in phytotrons and exposed to ambient and elevated pO3 (i.e. twice-ambient O3 levels, restricted to 〈 150 ppb) for two growing seasons. The translocation of C in the phloem and xylem was quantitatively studied by investigating the phloem/xylem-loading of sugars, the differentiation of stem conductive tissue and the hourly water flow through the stem. Results in the present study shown, elevated pO3 significantly decreased C translocation from shoot to roots in beech by reducing both sugar concentration in the phloem and conductive phloem area. Elevated pO3 also significantly decreased C reallocation from the roots to the shoot in beech by reducing both of sugar concentration in the xylem and transpiration rate. The adverse effects of elevated pO3 on C translocation in the phloem and xylem, however, were small in spruce. Contrasting to beech, spruce is less sensitive to elevated pO3, regarding to phloem differentiation and sugar concentrations in the phloem and xylem.
基金Under the auspices of Special Projects of National Key Basic Research Program of China(No.2012CB426509)National Natural Science Foundation of China(No.40971285,31370497,31500409)Yunnan Innovation Talents of Science and Technology Plan of China(No.2012HC007)
文摘The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.
文摘Background: With controlled ovarian hyperstimulation (COH) with gonadotrophin releasing hormone (GnRH) antagonists, sometimes it is associated with incomplete luteolysis leading to elevated serum progesterone in early follicular phase. Persistence of this elevation might reduce the chance for clinical pregnancy. Objective: To assess the effect of elevated early and late follicular progesterone (P) levels during gonadotrophins releasing hormone (GnRH) antagonist cycles on pregnancy outcome. Design: Prospective single center study. Setting: North-western Military hospital, Kingdom of Saudi Arabia. Patients: 302 in vitro fertilization/intra-cytoplasmic sperm injection (IVF-ICSI) patients. Intervention(s): Recombinant follicle stimulating hormone (r-FSH), (150 - 300 IU) started daily from cycle day 2;GnRH antagonist treatment started on day 6 of the cycle. The serum progesterone (P) measured twice on cycle day 2 and human chorionic gonadotrophin (hCG) day. Main Outcome Measures: Clinical pregnancy and live birth rates per started cycle. Results: The incidence of elevated serum P on day 2 was (5.3%) and on hCG day was (17.5%), statistically significant differences in clinical pregnancy rate (32.3% versus 13.0%) and in live birth rate (23.4% versus 11.1%) were present between the normal and high serum progesterone groups on hCG day, but these differences were not statistically significant in the groups of elevated basal progesterone. Conclusion: Follicular phase progesterone rise either on day 2 or the day of hCG trigger was associated with lower clinical pregnancy and live birth rates. This impact was more prominent with trigger day elevation.
文摘山地小气候特征对解释林线位置、形成机制以及生长⁃气候关系具有重要意义。由于高山气象数据匮乏,尤其是土壤水热数据的缺失,使以往对华北地区山地土壤的温湿度变化特征知之甚少。基于5个整年(2012—2016年)的连续监测,分析了华北芦芽山针叶林分布上下限土壤(10cm)温度和含水量的季节变化特征及差异。结果表明:(1)在芦芽山针叶林分布上限,北坡土壤10月末冻结,5月初解冻,南坡土壤冻结和解冻日均滞后于北坡,生长季内南北坡土壤均温、生长季长度无显著差异(122d,8.1℃和110d,7.6℃);(2)南北坡林线土壤含水量最低值都出现在冬季(1月),最高值则在秋季(10月和9月),并且南坡生长季土壤含水量(0.350 m3/m3)显著大于北坡(0.247 m3/m3);(3)与针叶森林的分布下限(2040 m a.s.l.)相比,林线土壤热量指标(年均温、生长季均温、最热月均温和生长季长度)均明显偏低,而土壤生长季内含水量显著偏大。研究结果揭示了亚高山区土壤冻融过程中温度和含水量的耦合关系,并进一步证实了芦芽山地区针叶树木径向生长在低海拔受干旱胁迫而在高海拔受低温限制。
文摘针对单频GPS(Global Position System)用户的载波相位周跳探测问题,在传统的载波相位和伪距组合方法的基础上提出了一种新的周跳探测方法.该方法将载波相位和码伪距的组合观测量在历元间做差形成差分序列,以此构造实时的周跳探测量,由于该探测量易受观测噪声的影响,因此使用仰角指数模型作为经验模型对于测距噪声进行估计,基于假设检验的方法,通过对该探测量是否超过相应的检测门限来判断是否存在周跳.在实测的GPS观测数据基础上,对这一方法进行了验证,结果表明:相对于传统的周跳探测方法,该方法可以更加及时、准确地发现较小的周跳,对于单频的GPS用户具有较好的适应性.