This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier ope...This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.展开更多
A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These...A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.展开更多
With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent ...Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.展开更多
Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction...Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction, especially the depth of the bottom cavity. In this study, a ship model experiment of a bulk carrier is conducted in a towing tank using the method of air layer drag reduction (ALDR) with different bottom cavity depths. The shape of the air layer is observed, and the changes in resistance are measured. The model experiments produce results of approximately 20% for the total drag reduction at the ship design speed for a 25-mm cavity continuously supplied with air at Cq = 0.224 in calm water, and the air layer covers the whole cavity when the air flow rate is suitable. In a regular head wave, the air layer is easily broken and reduces the drag reduction rate in short waves, particularly when λ/Lw1 is close to one;however, it still has a good drag reduction effect in the long waves.展开更多
To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are cl...To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are classified into three types,which are aircraft,ship and submarine. Then,the attack ability value and defense ability value for each type of armed forces are estimated by using BP neural network,whose training results of sample data are consistent with the estimation results. Next,compared the assessment values through an improved Bradley-Terry model and constructed a Bayesian network to do the global assessment,the winning probabilities of both combat sides are obtained. Finally,the winning probability estimation for a navy battle is given to illustrate the validity of the proposed scheme.展开更多
To linearize the multi.band PAs/transmitters, a serial of multi.band predistortion models based on multi.dimensional architecture have been proposed. However, most of these models work properly only for the signals wh...To linearize the multi.band PAs/transmitters, a serial of multi.band predistortion models based on multi.dimensional architecture have been proposed. However, most of these models work properly only for the signals whose harmonic and intermodulation products of carriers' non.overlap with the interested fundamental bands. In this paper, the non.overlapping conditions for dual.band and tri.band signals are derived and denoted in the form of closed.form expression. It can be used to verify whether a given dual.band/multi.band signals can be linearized properly by these multi.dimensional behavioral models. Also the conditions can be used to plan the frequency spacing and maximum bandwidth of a multi.band or non.continuous carrier aggregation signal. Several dual.band and triband signals were tested on the same PA, by employing 2.D DPD and 3.D DPD behavioral models. The measurement results show that the signals which don't satisfy the non.overlapping conditions cannot be linearized well by the multi.dimensional behavioral models which does not take the harmonic and intermodulation products of carriers' into account.展开更多
The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal–oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively...The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal–oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W ), channel length (L), and stress voltage (Vd ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly.展开更多
The objective of this review is to outline the application of bicelles(or called bilayer micelles)and bilayer nanodisks in pharmaceutics,pharmaceutical analysis and biochemistry.The application of open disk-like struc...The objective of this review is to outline the application of bicelles(or called bilayer micelles)and bilayer nanodisks in pharmaceutics,pharmaceutical analysis and biochemistry.The application of open disk-like structures as model membrane and drug carrier has been described.The exploration of many reports in different fields suggested that these open disk-like structures have great potential in studying interactions between drug-membrane and structure/function studies of membrane-bound proteins.Furthermore,they could be applied as promising carriers for in vivo delivery of drugs,protein and peptide.展开更多
Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling ...Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.展开更多
[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinet...[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.展开更多
Hot carrier induced (HCI) degradation of surface channel n MOSFETs with different oxide thicknesses is investigated under maximum substrate current condition.Results show that the key parameters m and n of H...Hot carrier induced (HCI) degradation of surface channel n MOSFETs with different oxide thicknesses is investigated under maximum substrate current condition.Results show that the key parameters m and n of Hu's lifetime prediction model have a close relationship with oxide thickness.Furthermore,a linear relationship is found between m and n .Based on this result,the lifetime prediction model can be expended to the device with thinner oxides.展开更多
The development of the Energy Internet has improved the efficiency of energy utilization and promoted sustainable development of power and energy systems.The multi-energy system modeling considering the dynamic proces...The development of the Energy Internet has improved the efficiency of energy utilization and promoted sustainable development of power and energy systems.The multi-energy system modeling considering the dynamic process of transmission line is one of the key research points of Energy Internet operation control.Through the energy circuit theory,the lumped parameter model of natural gas pipelines is built and the dynamic characteristic parameters under the control instruction are extracted.Combined with dynamic characteristic parameters,the long short-term memory(LSTM)neural network is designed to fit the natural gas pipeline dynamic process into discrete linear time-varying(LTV)equations.Combined with the equations,an energy hub method is used to build a control model of industrial parks with multi-energy distribution system.Using the rolling optimal control strategy given in this paper,the model is solved by the Matlab-Yalmip solver and rolling control instructions of each energy conversion unit are obtained.Finally,the case study demonstrates that the LSTM neural network-based modeling method presented in this paper can accurately fit the dynamic process of a natural gas pipeline system.The rolling control model of the multi-energy system can improve the efficiency of energy utilization,exhibit the transmission line status constraints during the optimization control process and improve reliability of the multi-energy system operation.展开更多
The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This...The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.展开更多
Objective: Hepatocellular carcinoma(HCC) development among hepatitis B surface antigen(HBs Ag) carriers shows gender disparity, influenced by underlying liver diseases that display variations in laboratory tests. We a...Objective: Hepatocellular carcinoma(HCC) development among hepatitis B surface antigen(HBs Ag) carriers shows gender disparity, influenced by underlying liver diseases that display variations in laboratory tests. We aimed to construct a risk-stratified HCC prediction model for HBs Ag-positive male adults.Methods: HBs Ag-positive males of 35-69 years old(N=6,153) were included from a multi-center populationbased liver cancer screening study. Randomly, three centers were set as training, the other three centers as validation. Within 2 years since initiation, we administrated at least two rounds of HCC screening using Bultrasonography and α-fetoprotein(AFP). We used logistic regression models to determine potential risk factors,built and examined the operating characteristics of a point-based algorithm for HCC risk prediction.Results: With 2 years of follow-up, 302 HCC cases were diagnosed. A male-ABCD algorithm was constructed including participant's age, blood levels of GGT(γ-glutamyl-transpeptidase), counts of platelets, white cells,concentration of DCP(des-γ-carboxy-prothrombin) and AFP, with scores ranging from 0 to 18.3. The area under receiver operating characteristic was 0.91(0.90-0.93), larger than existing models. At 1.5 points of risk score,26.10% of the participants in training cohort and 14.94% in validation cohort were recognized at low risk, with sensitivity of identifying HCC remained 100%. At 2.5 points, 46.51% of the participants in training cohort and 33.68% in validation cohort were recognized at low risk with 99.06% and 97.78% of sensitivity, respectively. At 4.5 points, only 20.86% of participants in training cohort and 23.73% in validation cohort were recognized at high risk,with positive prediction value of 22.85% and 12.35%, respectively.Conclusions: Male-ABCD algorithm identified individual's risk for HCC occurrence within short term for their HCC precision surveillance.展开更多
Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present a...Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.展开更多
The desire to benefit from economy of scale is one of the major driving forces behind the continuous growth in ship sizes. However, models of new large ships need to be thoroughly investigated to determine the carrier...The desire to benefit from economy of scale is one of the major driving forces behind the continuous growth in ship sizes. However, models of new large ships need to be thoroughly investigated to determine the carrier's response in waves. In this work, experimental and numerical assessments of the motion and load response of a 550,000 DWT ore carrier are performed using prototype ships with softer stiffness, and towing tank tests are conducted using a segmented model with two schemes of softer stiffness. Numerical analyses are performed employing both rigid body and linear hydroelasticity theories using an in-house program and a comparison is then made between experimental and numerical results to establish the influence of stiffness on the ore carrier's springing response. Results show that softer stiffness models can be used when studying the springing response of ships in waves.展开更多
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t...Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.展开更多
This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the...This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,展开更多
文摘This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.
文摘A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
文摘Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.
基金supported by the Ministry of Industry and High Technology Marine Scientific Research Projects(Grant No.2011530)the High Performance Marine Technology Key Laboratory of the Ministry of Education Open Foundation(Grant No.2013033102)
文摘Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction, especially the depth of the bottom cavity. In this study, a ship model experiment of a bulk carrier is conducted in a towing tank using the method of air layer drag reduction (ALDR) with different bottom cavity depths. The shape of the air layer is observed, and the changes in resistance are measured. The model experiments produce results of approximately 20% for the total drag reduction at the ship design speed for a 25-mm cavity continuously supplied with air at Cq = 0.224 in calm water, and the air layer covers the whole cavity when the air flow rate is suitable. In a regular head wave, the air layer is easily broken and reduces the drag reduction rate in short waves, particularly when λ/Lw1 is close to one;however, it still has a good drag reduction effect in the long waves.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61374212)the Aeronautical Science Foundation of China(Grant No.20135152047)the Fundamental Research Funds for the Central Universities(Grant No.NJ20160022)
文摘To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are classified into three types,which are aircraft,ship and submarine. Then,the attack ability value and defense ability value for each type of armed forces are estimated by using BP neural network,whose training results of sample data are consistent with the estimation results. Next,compared the assessment values through an improved Bradley-Terry model and constructed a Bayesian network to do the global assessment,the winning probabilities of both combat sides are obtained. Finally,the winning probability estimation for a navy battle is given to illustrate the validity of the proposed scheme.
基金supported by National Key Basic Research Program of China (973 Program) (No.2014CB339900)the National High Technology Research and Development Program of China (863 Program) (No. 2015AA016801)National Natural Science Foundations of China (No.61327806)
文摘To linearize the multi.band PAs/transmitters, a serial of multi.band predistortion models based on multi.dimensional architecture have been proposed. However, most of these models work properly only for the signals whose harmonic and intermodulation products of carriers' non.overlap with the interested fundamental bands. In this paper, the non.overlapping conditions for dual.band and tri.band signals are derived and denoted in the form of closed.form expression. It can be used to verify whether a given dual.band/multi.band signals can be linearized properly by these multi.dimensional behavioral models. Also the conditions can be used to plan the frequency spacing and maximum bandwidth of a multi.band or non.continuous carrier aggregation signal. Several dual.band and triband signals were tested on the same PA, by employing 2.D DPD and 3.D DPD behavioral models. The measurement results show that the signals which don't satisfy the non.overlapping conditions cannot be linearized well by the multi.dimensional behavioral models which does not take the harmonic and intermodulation products of carriers' into account.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00606)the National Natural Science Foundation of China (Grant No. 61106106)the Fundamental Research Funds for the Central Universities, China (Grant No. K50510250006)
文摘The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal–oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W ), channel length (L), and stress voltage (Vd ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly.
文摘The objective of this review is to outline the application of bicelles(or called bilayer micelles)and bilayer nanodisks in pharmaceutics,pharmaceutical analysis and biochemistry.The application of open disk-like structures as model membrane and drug carrier has been described.The exploration of many reports in different fields suggested that these open disk-like structures have great potential in studying interactions between drug-membrane and structure/function studies of membrane-bound proteins.Furthermore,they could be applied as promising carriers for in vivo delivery of drugs,protein and peptide.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-006)
文摘Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.
基金Supported by the National Natural Science Foundation of China(20776054)~~
文摘[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.
文摘Hot carrier induced (HCI) degradation of surface channel n MOSFETs with different oxide thicknesses is investigated under maximum substrate current condition.Results show that the key parameters m and n of Hu's lifetime prediction model have a close relationship with oxide thickness.Furthermore,a linear relationship is found between m and n .Based on this result,the lifetime prediction model can be expended to the device with thinner oxides.
基金supported by National Key Research and Development Program(2018YFB2100100)。
文摘The development of the Energy Internet has improved the efficiency of energy utilization and promoted sustainable development of power and energy systems.The multi-energy system modeling considering the dynamic process of transmission line is one of the key research points of Energy Internet operation control.Through the energy circuit theory,the lumped parameter model of natural gas pipelines is built and the dynamic characteristic parameters under the control instruction are extracted.Combined with dynamic characteristic parameters,the long short-term memory(LSTM)neural network is designed to fit the natural gas pipeline dynamic process into discrete linear time-varying(LTV)equations.Combined with the equations,an energy hub method is used to build a control model of industrial parks with multi-energy distribution system.Using the rolling optimal control strategy given in this paper,the model is solved by the Matlab-Yalmip solver and rolling control instructions of each energy conversion unit are obtained.Finally,the case study demonstrates that the LSTM neural network-based modeling method presented in this paper can accurately fit the dynamic process of a natural gas pipeline system.The rolling control model of the multi-energy system can improve the efficiency of energy utilization,exhibit the transmission line status constraints during the optimization control process and improve reliability of the multi-energy system operation.
基金supported by the National Natural Science Foundation of China(Grant No.60776034)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.
基金supported by State Key Projects Specialized on Infectious Diseases (No. 2017ZX10201201-006)Key research projects for precision medicine (No. 2017YFC0908103)+1 种基金Innovation Fund for Medical Sciences of Chinese Academy of Medical Sciences (CIFMS, No. 2019-I2M-2-004, 2016-I2M-1-007, 2019-I2M-1-003)National Natural Science Foundation Fund (No. 81972628, No. 81974492)。
文摘Objective: Hepatocellular carcinoma(HCC) development among hepatitis B surface antigen(HBs Ag) carriers shows gender disparity, influenced by underlying liver diseases that display variations in laboratory tests. We aimed to construct a risk-stratified HCC prediction model for HBs Ag-positive male adults.Methods: HBs Ag-positive males of 35-69 years old(N=6,153) were included from a multi-center populationbased liver cancer screening study. Randomly, three centers were set as training, the other three centers as validation. Within 2 years since initiation, we administrated at least two rounds of HCC screening using Bultrasonography and α-fetoprotein(AFP). We used logistic regression models to determine potential risk factors,built and examined the operating characteristics of a point-based algorithm for HCC risk prediction.Results: With 2 years of follow-up, 302 HCC cases were diagnosed. A male-ABCD algorithm was constructed including participant's age, blood levels of GGT(γ-glutamyl-transpeptidase), counts of platelets, white cells,concentration of DCP(des-γ-carboxy-prothrombin) and AFP, with scores ranging from 0 to 18.3. The area under receiver operating characteristic was 0.91(0.90-0.93), larger than existing models. At 1.5 points of risk score,26.10% of the participants in training cohort and 14.94% in validation cohort were recognized at low risk, with sensitivity of identifying HCC remained 100%. At 2.5 points, 46.51% of the participants in training cohort and 33.68% in validation cohort were recognized at low risk with 99.06% and 97.78% of sensitivity, respectively. At 4.5 points, only 20.86% of participants in training cohort and 23.73% in validation cohort were recognized at high risk,with positive prediction value of 22.85% and 12.35%, respectively.Conclusions: Male-ABCD algorithm identified individual's risk for HCC occurrence within short term for their HCC precision surveillance.
基金supported in part by the National Natural Science Foundation of China(Nos.61741313,61304223,61673209,61533008)the Jiangsu Six Peak of Talents program(No.KTHY-027)+1 种基金the Aeronautical Science Foundation(No.2016ZA 52009)the Fundamental Research Funds for the Central Universities(Nos.NJ20160026,NS2017015)
文摘Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.
基金Supported by the National Natural Science Foundation of China (Grant No. 51079034), and the National Basic Research Program of China (Grant No. 2011CB013703)
文摘The desire to benefit from economy of scale is one of the major driving forces behind the continuous growth in ship sizes. However, models of new large ships need to be thoroughly investigated to determine the carrier's response in waves. In this work, experimental and numerical assessments of the motion and load response of a 550,000 DWT ore carrier are performed using prototype ships with softer stiffness, and towing tank tests are conducted using a segmented model with two schemes of softer stiffness. Numerical analyses are performed employing both rigid body and linear hydroelasticity theories using an in-house program and a comparison is then made between experimental and numerical results to establish the influence of stiffness on the ore carrier's springing response. Results show that softer stiffness models can be used when studying the springing response of ships in waves.
文摘Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.
基金supported by the National Natural Science Foundation of China (60801052)the Aeronautical Science Foundation of China(2009ZC52036)+1 种基金Nanjing University of Aeronautics and Astronautics Research Funding (NS2012010 NP2011036)
文摘This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,