期刊文献+
共找到1,627篇文章
< 1 2 82 >
每页显示 20 50 100
A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data
1
作者 P.K.A.Chitra S.Appavu alias Balamurugan +3 位作者 S.Geetha Seifedine Kadry Jungeun Kim Keejun Han 《Computer Systems Science & Engineering》 2024年第5期1367-1385,共19页
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this wor... A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods. 展开更多
关键词 multi-label imbalanced data multi-label learning Borderline MLSMOTE concurrent multi-label adaptive weighted multi-label elastic net difficult minority label
下载PDF
Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets
2
作者 Shuo Xu Yuefu Zhang +1 位作者 Xin An Sainan Pi 《Journal of Data and Information Science》 CSCD 2024年第2期81-103,共23页
Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on t... Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution. 展开更多
关键词 multi-label classification Real-World datasets Hierarchical structure Classification system Label correlation Machine learning
下载PDF
Boosting Adaptive Weighted Broad Learning System for Multi-Label Learning
3
作者 Yuanxin Lin Zhiwen Yu +2 位作者 Kaixiang Yang Ziwei Fan C.L.Philip Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2204-2219,共16页
Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone... Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone to serious intra-class and inter-class imbalance problems, which can significantly degrade the classification performance. To address the above issues, we propose the multi-label weighted broad learning system(MLW-BLS) from the perspective of label imbalance weighting and label correlation mining. Further, we propose the multi-label adaptive weighted broad learning system(MLAW-BLS) to adaptively adjust the specific weights and values of labels of MLW-BLS and construct an efficient imbalanced classifier set. Extensive experiments are conducted on various datasets to evaluate the effectiveness of the proposed model, and the results demonstrate its superiority over other advanced approaches. 展开更多
关键词 Broad learning system label correlation mining label imbalance weighting multi-label imbalance
下载PDF
Multi-Label Image Classification Based on Object Detection and Dynamic Graph Convolutional Networks
4
作者 Xiaoyu Liu Yong Hu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4413-4432,共20页
Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread a... Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets. 展开更多
关键词 Deep learning multi-label image recognition object detection graph convolution networks
下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
5
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
下载PDF
Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
6
作者 Kunqi Huang Yiran Lin +1 位作者 Yun Lai Xiaozhou Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期295-301,共7页
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature... Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials. 展开更多
关键词 multi-label classification learning nonlinear phononic crystals inverse design
下载PDF
Classification research of TCM pulse conditions based on multi-label voice analysis
7
作者 Haoran Shen Junjie Cao +5 位作者 Lin Zhang Jing Li Jianghong Liu Zhiyuan Chu Shifeng Wang Yanjiang Qiao 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第2期172-179,共8页
Objective:To explore the feasibility of remotely obtaining complex information on traditional Chinese medicine(TCM)pulse conditions through voice signals.Methods: We used multi-label pulse conditions as the entry poin... Objective:To explore the feasibility of remotely obtaining complex information on traditional Chinese medicine(TCM)pulse conditions through voice signals.Methods: We used multi-label pulse conditions as the entry point and modeled and analyzed TCM pulse diagnosis by combining voice analysis and machine learning.Audio features were extracted from voice recordings in the TCM pulse condition dataset.The obtained features were combined with information from tongue and facial diagnoses.A multi-label pulse condition voice classification DNN model was built using 10-fold cross-validation,and the modeling methods were validated using publicly available datasets.Results: The analysis showed that the proposed method achieved an accuracy of 92.59%on the public dataset.The accuracies of the three single-label pulse manifestation models in the test set were 94.27%,96.35%,and 95.39%.The absolute accuracy of the multi-label model was 92.74%.Conclusion: Voice data analysis may serve as a remote adjunct to the TCM diagnostic method for pulse condition assessment. 展开更多
关键词 Pulse conditions TCM pulse diagnosis Voice analysis multi-label classification Machine learning
下载PDF
Feature Selection for Multi-label Classification Using Neighborhood Preservation 被引量:11
8
作者 Zhiling Cai William Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期320-330,共11页
Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique f... Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods. 展开更多
关键词 Feature selection multi-label learning neighborhood relationship preserving sample similarity
下载PDF
Multi-label dimensionality reduction and classification with extreme learning machines 被引量:9
9
作者 Lin Feng Jing Wang +1 位作者 Shenglan Liu Yao Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期502-513,共12页
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc... In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification. 展开更多
关键词 multi-label dimensionality reduction kernel trick classification.
下载PDF
Radar emitter multi-label recognition based on residual network 被引量:10
10
作者 Yu Hong-hai Yan Xiao-peng +2 位作者 Liu Shao-kun Li Ping Hao Xin-hong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期410-417,共8页
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and... In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs. 展开更多
关键词 Radar emitter recognition Image processing PARALLEL Residual network multi-label
下载PDF
Multi-label learning algorithm with SVM based association 被引量:4
11
作者 Feng Pan Qin Danyang +3 位作者 Ji Ping Ma Jingya Zhang Yan Yang Songxiang 《High Technology Letters》 EI CAS 2019年第1期97-104,共8页
Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algori... Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algorithms with missing labels do not consider the relevance of labels, resulting in label estimation errors of new samples. A new multi-label learning algorithm with support vector machine(SVM) based association(SVMA) is proposed to estimate missing labels by constructing the association between different labels. SVMA will establish a mapping function to minimize the number of samples in the margin while ensuring the margin large enough as well as minimizing the misclassification probability. To evaluate the performance of SVMA in the condition of missing labels, four typical data sets are adopted with the integrity of the labels being handled manually. Simulation results show the superiority of SVMA in dealing with the samples with missing labels compared with other models in image classification. 展开更多
关键词 multi-label learning missing labels ASSOCIATION support vector machine(SVM)
下载PDF
Multi-Label Learning Based on Transfer Learning and Label Correlation 被引量:2
12
作者 Kehua Yang Chaowei She +2 位作者 Wei Zhang Jiqing Yao Shaosong Long 《Computers, Materials & Continua》 SCIE EI 2019年第7期155-169,共15页
In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local... In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local label correlations can appear in real-world situation at same time.On the other hand,we should not be limited to pairwise labels while ignoring the high-order label correlation.In this paper,we propose a novel and effective method called GLLCBN for multi-label learning.Firstly,we obtain the global label correlation by exploiting label semantic similarity.Then,we analyze the pairwise labels in the label space of the data set to acquire the local correlation.Next,we build the original version of the label dependency model by global and local label correlations.After that,we use graph theory,probability theory and Bayesian networks to eliminate redundant dependency structure in the initial version model,so as to get the optimal label dependent model.Finally,we obtain the feature extraction model by adjusting the Inception V3 model of convolution neural network and combine it with the GLLCBN model to achieve the multi-label learning.The experimental results show that our proposed model has better performance than other multi-label learning methods in performance evaluating. 展开更多
关键词 Bayesian networks multi-label learning global and local label correlations transfer learning
下载PDF
Study on Multi-Label Classification of Medical Dispute Documents 被引量:2
13
作者 Baili Zhang Shan Zhou +2 位作者 Le Yang Jianhua Lv Mingjun Zhong 《Computers, Materials & Continua》 SCIE EI 2020年第12期1975-1986,共12页
The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treat... The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods. 展开更多
关键词 Internet of Medical Things(IoMT) medical disputes medical dispute document(MDD) multi-label classification(MLC) key sentence extraction class imbalance
下载PDF
Novel Apriori-Based Multi-Label Learning Algorithm by Exploiting Coupled Label Relationship 被引量:1
14
作者 Zhenwu Wang Longbing Cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期206-214,共9页
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati... It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria. 展开更多
关键词 multi-label classification hypothesis testing k nearest neighbor apriori algorithm label coupling
下载PDF
Multi-Label Chinese Comments Categorization: Comparison of Multi-Label Learning Algorithms 被引量:4
15
作者 Jiahui He Chaozhi Wang +2 位作者 Hongyu Wu Leiming Yan Christian Lu 《Journal of New Media》 2019年第2期51-61,共11页
Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages suc... Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages such as English which use spaces to separate words.Before classifying text, it is necessary to perform a word segmentation operation to converta continuous language into a list of separate words and then convert it into a vector of acertain dimension. Generally, multi-label learning algorithms can be divided into twocategories, problem transformation methods and adapted algorithms. This work will usecustomer's comments about some hotels as a training data set, which contains labels for allaspects of the hotel evaluation, aiming to analyze and compare the performance of variousmulti-label learning algorithms on Chinese text classification. The experiment involves threebasic methods of problem transformation methods: Support Vector Machine, Random Forest,k-Nearest-Neighbor;and one adapted algorithm of Convolutional Neural Network. Theexperimental results show that the Support Vector Machine has better performance. 展开更多
关键词 multi-label classification Chinese text classification problem transformation adapted algorithms
下载PDF
Stable Label-Specific Features Generation for Multi-Label Learning via Mixture-Based Clustering Ensemble 被引量:1
16
作者 Yi-Bo Wang Jun-Yi Hang Min-Ling Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1248-1261,共14页
Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess... Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess its own characteristics,the strategy of extracting label-specific features has been widely employed to improve the discrimination process in multi-label learning,where the predictive model is induced based on tailored features specific to each class label instead of the identical instance representations.As a representative approach,LIFT generates label-specific features by conducting clustering analysis.However,its performance may be degraded due to the inherent instability of the single clustering algorithm.To improve this,a novel multi-label learning approach named SENCE(stable label-Specific features gENeration for multi-label learning via mixture-based Clustering Ensemble)is proposed,which stabilizes the generation process of label-specific features via clustering ensemble techniques.Specifically,more stable clustering results are obtained by firstly augmenting the original instance repre-sentation with cluster assignments from base clusters and then fitting a mixture model via the expectation-maximization(EM)algorithm.Extensive experiments on eighteen benchmark data sets show that SENCE performs better than LIFT and other well-established multi-label learning algorithms. 展开更多
关键词 Clustering ensemble expectation-maximization al-gorithm label-specific features multi-label learning
下载PDF
Intelligent Traffic Surveillance through Multi-Label Semantic Segmentation and Filter-Based Tracking 被引量:1
17
作者 Asifa Mehmood Qureshi Nouf Abdullah Almujally +2 位作者 Saud S.Alotaibi Mohammed Hamad Alatiyyah Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第9期3707-3725,共19页
Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significan... Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significantly over the world.In this paper,a novel method for intelligent traffic surveillance is presented.The proposed model is based on multilabel semantic segmentation using a random forest classifier which classifies the images into five classes.To improve the results,mean-shift clustering was applied to the segmented images.Afterward,the pixels given the label for the vehicle were extracted and blob detection was applied to mark each vehicle.For the validation of each detection,a vehicle verification method based on the structural similarity index is proposed.The tracking of vehicles across the image frames is done using the Identifier(ID)assignment technique and particle filter.Also,vehicle counting in each frame along with trajectory estimation was done for each object.Our proposed system demonstrated a remarkable vehicle detection rate of 0.83 over Vehicle Aerial Imaging from Drone(VAID),0.86 over AU-AIR,and 0.75 over the Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)dataset during the experimental evaluation.The proposed system can be used for several purposes,such as vehicle identification in traffic,traffic density estimation at intersections,and traffic congestion sensing on a road. 展开更多
关键词 Traffic surveillance multi-label segmentation random forest particle filter computer vision
下载PDF
iATC_Deep-mISF: A Multi-Label Classifier for Predicting the Classes of Anatomical Therapeutic Chemicals by Deep Learning 被引量:1
18
作者 Zhe Lu Kuo-Chen Chou 《Advances in Bioscience and Biotechnology》 2020年第5期153-159,共7页
The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral ... The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral drugs, information of anatomical therapeutic chemicals is vitally important. In view of this, a CNN based predictor called “iATC_Deep-mISF” has been developed. The predictor is particularly useful in dealing with the multi-label systems in which some chemicals may occur in two or more different classes. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/iATC_Deep-mISF/, which will become a very powerful tool for developing effective drugs to fight pandemic coronavirus and save the mankind of this planet. 展开更多
关键词 PANDEMIC CORONAVIRUS multi-label System ANATOMICAL THERAPEUTIC CHEMICALS Learning at Deeper Level Five-Steps Rule
下载PDF
Coupled Attribute Similarity Learning on Categorical Data for Multi-Label Classification
19
作者 Zhenwu Wang Longbing Cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第3期404-410,共7页
In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different ... In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different attributes and multi-label sets using information gain,which can be regarded as the important degree of each attribute in the attribute learning method,but also further analyzes the intra-coupled and inter-coupled interactions between an attribute value pair for different attributes and multiple labels.The paper compared the CASonMLCD method with the OF distance and Jaccard similarity,which is based on the MLKNN algorithm according to 5common evaluation criteria.The experiment results demonstrated that the CASonMLCD method can mine the similarity relationship more accurately and comprehensively,it can obtain better performance than compared methods. 展开更多
关键词 COUPLED SIMILARITY multi-label categorical data CORRELATIONS
下载PDF
Multi-label local discriminative embedding
20
作者 Jujie Zhang Min Fang Huimin Chai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期1009-1018,共10页
Multi-label classification problems arise frequently in text categorization, and many other related applications. Like conventional categorization problems, multi-label categorization tasks suffer from the curse of hi... Multi-label classification problems arise frequently in text categorization, and many other related applications. Like conventional categorization problems, multi-label categorization tasks suffer from the curse of high dimensionality. Existing multi-label dimensionality reduction methods mainly suffer from two limitations. First, latent nonlinear structures are not utilized in the input space. Second, the label information is not fully exploited. This paper proposes a new method, multi-label local discriminative embedding (MLDE), which exploits latent structures to minimize intraclass distances and maximize interclass distances on the basis of label correlations. The latent structures are extracted by constructing two sets of adjacency graphs to make use of nonlinear information. Non-symmetric label correlations, which are the case in real applications, are adopted. The problem is formulated into a global objective function and a linear mapping is achieved to solve out-of-sample problems. Empirical studies across 11 Yahoo sub-tasks, Enron and Bibtex are conducted to validate the superiority of MLDE to state-of-art multi-label dimensionality reduction methods. 展开更多
关键词 multi-label classification dimensionality reduction latent structure label correlation
下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部