期刊文献+
共找到10,205篇文章
< 1 2 250 >
每页显示 20 50 100
Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells
1
作者 Jianchao Shi Yanan Zhang +2 位作者 Wantao Liu Yuliang Su Jian Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1147-1163,共17页
Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these ... Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased. 展开更多
关键词 Type III tight oil reservoirs refracturing methods horizontal wells fracture network study fracture network evolution
下载PDF
Multistage hydraulic fracturing of a horizontal well for hard roof related coal burst control:Insights from numerical modelling to field application
2
作者 Jiaxin Zhuang Zonglong Mu +4 位作者 Wu Cai Hu He Lee J.Hosking Guojun Xi Biao Jiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1095-1114,共20页
Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of c... Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering. 展开更多
关键词 Coal burst Multistage hydraulic fracturing of horizontal wells Mining-induced seismicity Mining-induced stress Effectiveness evaluation
下载PDF
Application of Horizontal Well Seismic Geo-Steering Technology in XX Block Development
3
作者 Xuecheng Jia Xiaoyi Cheng +4 位作者 Hui Ma Shilei Lu Xin Yang Shuo Wang Xiang Li 《Open Journal of Yangtze Oil and Gas》 2024年第3期65-74,共10页
During the development phase horizontal wells are very efficient way to improve the production in the deep coal bed methane. The 8# coal seam in the XX block on the eastern edge of the Ordos Basin has challenges such ... During the development phase horizontal wells are very efficient way to improve the production in the deep coal bed methane. The 8# coal seam in the XX block on the eastern edge of the Ordos Basin has challenges such as deep burial depth (>2000 m), thin coal sweet spot (3 m), and significant short-distance structural fluctuations. The challenges caused a high risk of missing targets and running out of the target layers, as well as difficulties in cementing and completion due to uneven well trajectories. To address these challenges, this paper focuses on solving the issues through detailed precise geological modeling, optimized trajectory design, and accurate seismic geology Steerable Drilling. 1) Based on reasonable velocity field construction and Time-Depth transformation, a precise directional model is constructed using the layer-by-layer approximation principle with reference to marker layers, improving the accuracy of the target spot and avoiding premature or delayed entry into the target;2) Based on a precise geological model, the dip angle of the strata ahead and the development of sweet spots are clearly defined, enabling optimized trajectory design for horizontal wells;3) Using “1 + N” dynamic modeling to update the geological model in real-time during the drilling process, and actively guide the drill bit through the horizontal segment smoothly by using multi-information judgment of the drill bit position. The actual drilling of 80 completed horizontal wells in this area show: That this approach effectively ensures the smooth trajectory and high-quality drilling rate of the horizontal well in the coal seam, providing a basis for subsequent hydraulic fracturing and increasing single-well production. At the same time, it has certain potential value and significance for similar coalbed methane developments under similar geological conditions. 展开更多
关键词 Seismic Geo-Steerable horizontal wells Coalbed Methane Marker Layers
下载PDF
Research into magnetic guidance technology for directional drilling in SAGD horizontal wells 被引量:10
4
作者 Gao Deli Diao Binbin +1 位作者 Wu Zhiyong Zhu Yu 《Petroleum Science》 SCIE CAS CSCD 2013年第4期500-506,共7页
SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the r... SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the reservoir.By studying the attitude of the downhole probe tube and the production well trajectory,an algorithm is proposed for eliminating ferromagnetic interference while drilling injection wells.A high accuracy filter circuit has been designed to correct the detected magnetic signals,which are ultra-weak,frequency-instable,and narrow-band.The directional drilling magnetic guidance system(DD-MGS) has been developed by integrating these advanced techniques.It contains a sub-system for the ranging calculation software,a magnetic source,a downhole probe tube and a sub-system for collecting & processing the detected signals.The DD-MGS has succeeded in oilfield applications.It can guide the directional drilling trajectory not only in the horizontal section but also in the build section of horizontal injection wells.This new technology has broad potential applications. 展开更多
关键词 Heavy oil SAGD horizontal wells directional drilling magnetic guidance system
下载PDF
Productivity analysis of horizontal wells intercepted by multiple finite-conductivity fractures 被引量:7
5
作者 Wang Xiaodong Li Guanghe Wang Fei 《Petroleum Science》 SCIE CAS CSCD 2010年第3期367-371,共5页
Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horiz... Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horizontal wells have been presented in the literature. With such methods, however, it is still difficult to obtain an accurate result. This paper firstly presents the dimensionless conductivity theory of vertical fractures. Then models for calculating the equivalent wellbore radius and the skin factor due to flow convergence to the well bore are proposed after analyzing the steady-state flow in porous reservoirs. By applying the superposition principle to the pressure drop, a new method for evaluating the productivity of horizontal wells intercepted by multiple finite-conductivity fractures is developed. The influence of fracture conductivity and fracture half length on the horizontal well productivity is quantitatively analyzed with a synthetic case. Optimum fracture number and fracture space are further discussed in this study. The results prove that the method outlined here should be useful to design optimum fracturing of horizontal wells. 展开更多
关键词 Production rate analysis fractured horizontal wells finite-conductivity vertical fractures fracturing design optimization
下载PDF
Numerical simulation and dimension reduction analysis of electromagnetic logging while drilling of horizontal wells in complex structures 被引量:7
6
作者 Zhen-Guan Wu Shao-Gui Deng +5 位作者 Xu-Quan He Runren Zhang Yi-Ren Fan Xi-Yong Yuan Yi-Zhi Wu Qing Huo Liu 《Petroleum Science》 SCIE CAS CSCD 2020年第3期645-657,共13页
Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/ele... Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy. 展开更多
关键词 Complex formation structures horizontal wells Electromagnetic logging while drilling 2.5D algorithm-Model simplification
下载PDF
Optimization of perforation distribution for horizontal wells based on genetic algorithms 被引量:4
7
作者 Wang Zhiming Wei Jianguang +2 位作者 Zhang Jian Gong Bin Yan Haiyun 《Petroleum Science》 SCIE CAS CSCD 2010年第2期232-238,共7页
Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimi... Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimization of perforating parameters in partitioned sections in horizontal intervals helps homogenize the inflow from the reservoir and thus is critically important for enhanced oil recovery. This paper derives a coupled reservoir-wellbore flow model based on inflow controlling theory. Genetic algorithms are applied to solving the model as they excel in obtaining the global optimum of discrete functions. The optimized perforating strategy applies a low perforation density in high- permeability intervals and a high perforation density in low-permeability intervals. As a result, the inflow profile is homogenized and idealized. 展开更多
关键词 well completion perforation optimization genetic algorithms PARTITION horizontal well
下载PDF
Evaluation of hydraulic fracturing of horizontal wells in tight reservoirs based on the deep neural network with physical constraints 被引量:1
8
作者 Hong-Yan Qu Jian-Long Zhang +3 位作者 Fu-Jian Zhou Yan Peng Zhe-Jun Pan Xin-Yao Wu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1129-1141,共13页
Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fra... Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fracture parameters for the evaluation of the fracturing effects. Field experience and the law of fracture volume conservation were incorporated as physical constraints to improve the prediction accuracy due to small amount of data. A combined neural network was adopted to input both static geological and dynamic fracturing data. The structure of the DNN was optimized and the model was validated through k-fold cross-validation. Results indicate that this DNN model is capable of predicting the fracture parameters accurately with a low relative error of under 10% and good generalization ability. The adoptions of the combined neural network, physical constraints, and k-fold cross-validation improve the model performance. Specifically, the root-mean-square error (RMSE) of the model decreases by 71.9% and 56% respectively with the combined neural network as the input model and the consideration of physical constraints. The mean square error (MRE) of fracture parameters reduces by 75% because the k-fold cross-validation improves the rationality of data set dividing. The model based on the DNN with physical constraints proposed in this study provides foundations for the optimization of fracturing design and improves the efficiency of fracture diagnosis in tight oil and gas reservoirs. 展开更多
关键词 Evaluation of fracturing effects Tight reservoirs Physical constraints Deep neural network horizontal wells Combined neural network
下载PDF
The critical rate of horizontal wells in bottom-water reservoirs with an impermeable barrier 被引量:7
9
作者 Yue Ping Du Zhimin +1 位作者 Chen Xiaofan Liang Baosheng 《Petroleum Science》 SCIE CAS CSCD 2012年第2期223-229,共7页
Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil fo... Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells. 展开更多
关键词 horizontal well bottom-water reservoir barriers critical rate cresting
下载PDF
Stress redistribution in multi-stage hydraulic fracturing of horizontal wells in shales 被引量:7
10
作者 Yi-Jin Zeng Xu Zhang Bao-Ping Zhang 《Petroleum Science》 SCIE CAS CSCD 2015年第4期628-635,共8页
Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. T... Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. The initiation and propagation of hydraulic fractures will cause stress redistribution and may activate natural fractures in the reservoir. Due to the limitation of the analytical method in calculation of induced stresses, we propose a numerical method, which incorporates the interaction of hydraulic fractures and the wellbore, and analyzes the stress distri- bution in the reservoir under different stage spacing. Simulation results indicate the following: (1) The induced stress was overestimated from the analytical method because it did not take into account the interaction between hydraulic fractures and the horizontal wellbore. (2) The hydraulic fracture had a considerable effect on the redis- tribution of stresses in the direction of the horizontal wellbore in the reservoir. The stress in the direction per- pendicular to the horizontal wellbore after hydraulic frac- turing had a minor change compared with the original in situ stress. (3) Stress interferences among fractures were greatly connected with the stage spacing and the distance from the wellbore. When the fracture length was 200 m, and the stage spacing was 50 m, the stress redistribution due to stage fracturing may divert the original stress pat- tern, which might activate natural fractures so as to generate a complex fracture network. 展开更多
关键词 Shale gas - horizontal well Multi-stagefracturing Complex fracture Stage spacing - Inducedstress
下载PDF
The productivity evaluation model and its application for finite conductivity horizontal wells in fault block reservoirs 被引量:1
11
作者 Jiang Hanqiao Ye Shuangjiang +3 位作者 Lei Zhanxiang Wang Xing Zhu Guojin Chen Minfeng 《Petroleum Science》 SCIE CAS CSCD 2010年第4期530-535,共6页
It is very difficult to evaluate the productivity of horizontal wells in fault block reservoirs due to the influence of fault sealing.On the basis of the method of images and source-sink theory,a semianalytical model ... It is very difficult to evaluate the productivity of horizontal wells in fault block reservoirs due to the influence of fault sealing.On the basis of the method of images and source-sink theory,a semianalytical model coupling reservoir and finite conductivity horizontal wellbore flow dynamics was built,in which the influence of fault sealing was taken into account.The distribution of wellbore flow and radial inflow profiles along the horizontal interval were also obtained.The impact of the distance between the horizontal well and the fault on the well productivity was quantitatively analyzed.Based on this analysis,the optimal distance between the horizontal well and the fault in banded fault block reservoirs could be determined.According to the field application,the relative error calculated by the model proposed in this paper is within ±15%.It is an effective evaluation method for the productivity of horizontal wells in fault block reservoirs.The productivity of the horizontal well increases logarithmically as the distance between the horizontal well and the fault increases.The optimal distance between the horizontal well and the fault is 0.25-0.3 times the horizontal well length. 展开更多
关键词 Fault block reservoir horizontal well finite conductivity productivity evaluation well location design
下载PDF
A novel steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs 被引量:3
12
作者 Zhang Liehui Zhao Yulong Liu Zhibin 《Petroleum Science》 SCIE CAS CSCD 2011年第1期63-69,共7页
It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne... It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells. 展开更多
关键词 horizontal well point-source function bottom water driver gas reservoir steady-state productivity
下载PDF
Steam Flooding after Steam Soak in Heavy Oil Reservoirs through Extended-reach Horizontal Wells 被引量:1
13
作者 Ning Zhengfu Liu Huiqing Zhang Hongling 《Petroleum Science》 SCIE CAS CSCD 2007年第2期71-74,共4页
This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special pac... This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special packers within the long completion horizontal interval to establish an injection zone and a production zone. This method can also be used in steam flooding after steam soak through a horizontal well. Simulation results showed that it was desirable to start steam flooding after six steam soaking cycles and at this time the oil/steam ratio was 0.25 and oil recovery efficiency was 23.48%. Steam flooding performance was affected by separation interval and steam injection rate. Reservoir numerical simulation indicated that maximum oil recovery would be achieved at a separation section of 40-50 m at steam injection rate of 100-180 t/d; and the larger the steam injection rate, the greater the water cut and pressure difference between injection zone and production zone. A steam injection rate of 120 t/d was suitable for steam flooding under practical injection-production conditions. All the results could be useful for the guidance of steam flooding projects. 展开更多
关键词 Heavy oil horizontal well steam soak steam flooding single well injection and production optimized design
下载PDF
A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells 被引量:3
14
作者 CHEN Ming ZHANG Shicheng +2 位作者 XU Yun MA Xinfang ZOU Yushi 《Petroleum Exploration and Development》 2020年第1期171-183,共13页
To resolve the issue of design for multi-stage and multi-cluster fracturing in multi-zone reservoirs, a new efficient algorithm for the planar 3 D multi-fracture propagation model was proposed. The model considers flu... To resolve the issue of design for multi-stage and multi-cluster fracturing in multi-zone reservoirs, a new efficient algorithm for the planar 3 D multi-fracture propagation model was proposed. The model considers fluid flow in the wellbore-perforation-fracture system and fluid leak-off into the rock matrix, and uses a 3 D boundary integral equation to describe the solid deformation. The solid-fluid coupling equation is solved by an explicit integration algorithm, and the fracture front is determined by the uniform tip asymptotic solutions and shortest path algorithm. The accuracy of the algorithm is verified by the analytical solution of radial fracture, results of the implicit level set algorithm, and results of organic glass fracturing experiment. Compared with the implicit level set algorithm(ILSA), the new algorithm is much higher in computation speed. The numerical case study is conducted based on a horizontal well in shale gas formation of Zhejiang oilfield. The impact of stress heterogeneity among multiple clusters and perforation number distribution on multi-fracture growth and fluid distribution among multiple fractures are analyzed by numerical simulation. The results show that reducing perforation number in each cluster can counteract the effect of stress contrast among perforation clusters. Adjusting perforation number in each cluster can promote uniform flux among clusters, and the perforation number difference should better be 1-2 among clusters. Increasing perforation number in the cluster with high in situ stress is conducive to uniform fluid partitioning. However, uniform fluid partitioning is not equivalent to uniform fracture geometry. The fracture geometry is controlled by the stress interference and horizontal principal stress profile jointly. 展开更多
关键词 horizontal well MULTI-STAGE FRACTURING multi-fracture growth 3D boundary element PLANAR stress heterogeneity PERFORATION optimization
下载PDF
Water-out performance and pattern of horizontal wells for marine sandstone reservoirs in Tarim Basin, NW China
15
作者 LIU Guangwei ZHOU Daiyu +2 位作者 JIANG Hanqiao WANG Tao LI Junjian 《Petroleum Exploration and Development》 2018年第1期136-144,共9页
Based on geological analysis,reservoir numerical simulation and production performance analysis,water-out performance and pattern of horizontal wells in Tarim marine sandstone reservoir were studied.Compared with cont... Based on geological analysis,reservoir numerical simulation and production performance analysis,water-out performance and pattern of horizontal wells in Tarim marine sandstone reservoir were studied.Compared with continental sandstone reservoirs,the marine sandstone reservoirs in Tarim Basin were characterized by low oil viscosity,good reservoir continuity,and development of interbeds,which together with the large amount of horizontal wells,resulted in fast production rate and high recovery degree of the reservoirs.The main controlling factors of uneven water-out in horizontal wells were reservoir seepage barrier,injection-production well pattern,and dominant seepage channel.Thus 9 types in 4 categories of typical water-out pattern of horizontal wells in Tarim marine sandstone reservoirs were identified,and water-out management measures were proposed for them respectively according to their water-out mechanism and remaining oil distribution characteristics.Finally,the water-out pattern can be identified based on the inflection characteristics of derivative curve of water-oil ratio.This study of the water-out pattern can provide guidance for the adjustment policy of water injection in horizontal wells in marine sandstone reservoirs of Tarim Oilfield. 展开更多
关键词 marine sandstone water-out PERFORMANCE water-out PATTERN horizontal wells TARIM Basin
下载PDF
Practice and understanding of sidetracking horizontal drilling in old wells in Sulige Gas Field, NW China
16
作者 ZHANG Jinwu WANG Guoyong +1 位作者 HE Kai YE Chenglin 《Petroleum Exploration and Development》 2019年第2期384-392,共9页
To seek effective ways of lowering development cost and tapping inter-well remaining reserves, sidetracking horizontal wells from old wells in Su10 and Su53 Block were conducted. The engineering and geological problem... To seek effective ways of lowering development cost and tapping inter-well remaining reserves, sidetracking horizontal wells from old wells in Su10 and Su53 Block were conducted. The engineering and geological problems such as leakage, collapse and sticking in slim-hole sidetracking, and difficult evaluation of remaining gas were gradually overcome, and a set of drilling and completion technology, well deployment optimization technology and geo-steering technology suitable for sidetracking horizontal wells in tight sandstone gas reservoirs have been worked out. By making full use of the old well, sidetracking horizontal wells can greatly reduce development costs, enhance the producing degree of inter-well remaining reserves, and get production 3-5 times of that of adjacent vertical wells.Its production effect is influenced by encountered sandstone length, the position of the horizontal segment in the reservoir, produced effective reservoir thickness, gas saturation, controlled reserves and fracturing effect, etc. Up to now, in Block Su10 and Su53, 12 sidetracking horizontal wells have been drilled, which have an average drilling cycle of 49 days, average horizontal section length of 689 m,average effective drilling ratio of 61.5%, average well-head pressure of 16.2 MPa, and daily output of 4.7×10~4 m^3 at the initial stage after production. By the end of 2017, the average yield increment was more than 1 000×10~4 m^3 with good effect. With the increase of low yield old wells, wells in the enrichment regions tend to be saturated and the rest gas-bearing areas are lower in grade, therefore, sidetracking horizontal well can be used for optimization of well pattern, well deployment mode and exploitation of remaining oil areas. 展开更多
关键词 SULIGE Gas Field SIDETRACKING horizontal well TIGHT SANDSTONE old well stimulation RESERVES producing
下载PDF
Annual Output of Five Horizontal Wells Reaches One Million Tons
17
《China Oil & Gas》 CAS 1996年第2期124-124,共1页
AnnualOutputofFiveHorizontalWellsReachesOneMillionTons¥//OnMarch3,1996,thehorizontalwellNo.4,TazhongNo.4oilf... AnnualOutputofFiveHorizontalWellsReachesOneMillionTons¥//OnMarch3,1996,thehorizontalwellNo.4,TazhongNo.4oilfieldproduced1192t... 展开更多
关键词 Annual Output of Five horizontal wells Reaches One Million Tons
下载PDF
Thermal Recovery in Horizontal Wells at Le'an Oilfield
18
《China Oil & Gas》 CAS 1997年第2期122-122,共1页
关键词 horizontal well Thermal RECOVERY Pattern MODIFICATION
下载PDF
Study on Water Ridge Variation of Horizontal Wells in Bottom Water Reservoir
19
作者 Xiujuan Zhao Mo Zhang +2 位作者 Quanlin Wang Jie Tan Bo Li 《Journal of Power and Energy Engineering》 2020年第10期43-54,共12页
X oilfield is a typical strong bottom water reservoir in Bohai Sea. It is developed by single sand body horizontal well. The edge and bottom water of the reservoir is active and natural energy development mode is adop... X oilfield is a typical strong bottom water reservoir in Bohai Sea. It is developed by single sand body horizontal well. The edge and bottom water of the reservoir is active and natural energy development mode is adopted. At present, the comprehensive water cut of the oilfield is more than 96%, and has entered the stage of high water cut oil recovery. At present, fluid extraction from old wells and new adjustment wells are the main ways to increase oil production. With the deepening of development, the distribution of underground remaining oil is becoming more and more complex. In order to further improve the implementation effect of adjustment wells, the study of residual oil distribution law is increasingly important, and the study of water ridge morphology of horizontal wells in bottom water reservoir has an important guiding role in the study of remaining oil distribution. The main contents of this paper are as follows: the influence of horizontal well spacing, vertical and horizontal permeability ratio, single well liquid production, vertical position of horizontal well, oil-water viscosity ratio, water cut and interlayer on water ridge morphology. These understandings can effectively guide the deployment and optimization of adjustment wells. It provides technical support for the prediction of watered out thickness and optimization of adjustment well layout scheme in X oilfield, and guides the further development and production of the oilfield. 展开更多
关键词 Bottom Water Reservoir horizontal well Water Ridge Rising Height Water Ridge Range
下载PDF
Application of Combined Production Logging Technology in Horizontal Wells
20
作者 Jiling Li Peng Niu +2 位作者 Huanying Ma Jijiu Zhang Lizhu Jia 《石油天然气学报》 CAS 2017年第3期36-44,共9页
随着海上油气田开发的不断深化,水平井技术已在增储上产中起到了巨大作用,但也面临着出水及含水不断升高的问题。进行水平段储层生产测井,确定井下层内生产情况及储层动用情况,是后期控水稳产、措施挖潜的关键。水平井因井眼轨迹与储层... 随着海上油气田开发的不断深化,水平井技术已在增储上产中起到了巨大作用,但也面临着出水及含水不断升高的问题。进行水平段储层生产测井,确定井下层内生产情况及储层动用情况,是后期控水稳产、措施挖潜的关键。水平井因井眼轨迹与储层平行、流体重力分异明显、上/下坡流共存等因素,常规居中测量中心流速的测井技术已不适用;同时,水平井为单层开采,剩余油饱和度分布无标准水层刻度,为生产层剩余油分布监测提出了挑战。提出了阵列式多相流测井仪组合(MAPS)和剩余油饱和度测井技术(RPM)的组合测井方式,通过水平段截面速度剖面、流体性质分布以及剩余油饱和度分布三者间的相互验证、综合解释的解决方案,取得了良好效果。 展开更多
关键词 学术期刊 石油天然气 中国 期刊评价 学报 研制工作 项目组
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部