Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizabilit...Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.展开更多
Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocks...Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .展开更多
Synchronous rolling-casting freeform manufacturing for Metal(SRCFMM) means that the refined liquid metal is continuously pressed out from the bottom of crucible. There is a horizontal movable plate beneath the outlet....Synchronous rolling-casting freeform manufacturing for Metal(SRCFMM) means that the refined liquid metal is continuously pressed out from the bottom of crucible. There is a horizontal movable plate beneath the outlet. The clearance between the outlet and the plate is about several hundred micrometers. SRCFMM, similar to additive manufacturing, implies layer by layer shaping and consolidation of feedstock to arbitrary configurations, normally using a computer controlled movable plate. The primary dendritic crystal is easily crushed by movement of substrate in the rolling-casting area. ZL104 was used as the test materials, determining the control temperature by differential scanning thermal analysis(DSC), preparing a kind of samples by SR CFMM, then analyzing microstructures and mechanical property of the samples. Characteristics and distribution of the primary particles were assessed by optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectrum(EDS) and image analysis software. Mechanical property of the samples was assessed by vickers hardness. The results show that the samples fabricated by SRCFMM have uniform structures and good performances with the velocity of the substrate controlled about 10 cm/s and temperature at about 580 ℃.展开更多
This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical result...This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical results is verified by experiments.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. B...The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. By utilizing an adaptive controller based on the dynamic compensation mechanism, exact knowledge of the systems is not necessarily required, and the synchronous speed is controllable by tuning the controller parameters. Sufficient conditions for the asymptotic stability of the two synchronization schemes are derived. Numerical simulation results demonstrate that the adaptive synchronization scheme with four control inputs and the cascade adaptive synchronization scheme with only one control signal are effective and feasible in chaos synchronization of hyperchaotic systems.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r...In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.展开更多
For the two-level five-phase permanent magnet synchronous motor(FP-PMSM)drive system,an improved finite-control-set model predictive torque control(MPTC)strategy is adopted to reduce torque ripple and improve the cont...For the two-level five-phase permanent magnet synchronous motor(FP-PMSM)drive system,an improved finite-control-set model predictive torque control(MPTC)strategy is adopted to reduce torque ripple and improve the control performance of the system.The mathematical model of model reference adaptive system(MRAS)of FP-PMSM is derived and a method based on fractional order sliding mode(FOSM)is proposed to construct the model reference adaptive system(FOSMMRAS)to improve the motor speed estimation accuracy and eliminate the sliding mode integral saturation effect.The simulation results show that the FP-PMSM speed sensorless FCS-MPTC system based on FOSM-MRAS has strong robustness,good dynamic performance and static performance,and high reliability.展开更多
Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is...Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.展开更多
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where...To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strate...A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.展开更多
A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can main...A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.展开更多
Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). Ther...Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). There are very few research works that focus on the magnitude e ects on such induced unbalance vibration. In this paper, a finite element model(FEM) is developed to characterize a realistic automotive TC rotor with floating ring bearings(FRBs). The nonlinear dynamic responses of the TC rotor system with di erent levels of induced unbalance magni?tude in compressor and turbine wheels are calculated. From the results of waterfall and response spectral intensity plots, the bifurcation and instability phenomena depend on unbalance magnitude during the startup of TC. The sub?synchronous component 0.12× caused rotor unstable is the dominant frequency for small induced unbalance. The nonlinear e ects of induced unbalance in the turbine wheel is obvious stronger than the compressor wheel. As the unbalance magnitude increases from 0.05 gbration 1·mm to 0.2 g·mm, the vibration component changes from mainly 0.12× to synchronous vi×. When unbalance increases continuously, the rotor vibration response amplitude is rapidly growing and the 1× caused by the large unbalance excitation becomes the dominant frequency. A suitable un?balance magnitude of turbine wheel and compressor wheel for the high?speed TC rotor with FRBs is proposed: the value of induced un?balance magnitude should be kept around 0.2 g·mm.展开更多
The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operat...The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operation of motor-driven. Hence, it is important to study the methods of controlling or suppressing chaos in PMSMs. In this work, the Takagi-Sugeno (T-S) fuzzy impulsive control model for PMSMs is established via the T-S modelling methodology and impulsive technology. Based on the new model, the control conditions of asymptotieal stability and exponential stability for PMSMs have been derived by the Lyapunov method. Finaily, an illustrated example is also given to show the effectiveness of the obtained results.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic ...Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.展开更多
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ...Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 70671097)
文摘Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.
文摘Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .
基金Funded by the National Natural Science Foundation of China(No.51341009)
文摘Synchronous rolling-casting freeform manufacturing for Metal(SRCFMM) means that the refined liquid metal is continuously pressed out from the bottom of crucible. There is a horizontal movable plate beneath the outlet. The clearance between the outlet and the plate is about several hundred micrometers. SRCFMM, similar to additive manufacturing, implies layer by layer shaping and consolidation of feedstock to arbitrary configurations, normally using a computer controlled movable plate. The primary dendritic crystal is easily crushed by movement of substrate in the rolling-casting area. ZL104 was used as the test materials, determining the control temperature by differential scanning thermal analysis(DSC), preparing a kind of samples by SR CFMM, then analyzing microstructures and mechanical property of the samples. Characteristics and distribution of the primary particles were assessed by optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectrum(EDS) and image analysis software. Mechanical property of the samples was assessed by vickers hardness. The results show that the samples fabricated by SRCFMM have uniform structures and good performances with the velocity of the substrate controlled about 10 cm/s and temperature at about 580 ℃.
文摘This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical results is verified by experiments.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB210106)
文摘The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. By utilizing an adaptive controller based on the dynamic compensation mechanism, exact knowledge of the systems is not necessarily required, and the synchronous speed is controllable by tuning the controller parameters. Sufficient conditions for the asymptotic stability of the two synchronization schemes are derived. Numerical simulation results demonstrate that the adaptive synchronization scheme with four control inputs and the cascade adaptive synchronization scheme with only one control signal are effective and feasible in chaos synchronization of hyperchaotic systems.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
文摘In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.
基金National Natural Science Foundation of China(No.51867012)。
文摘For the two-level five-phase permanent magnet synchronous motor(FP-PMSM)drive system,an improved finite-control-set model predictive torque control(MPTC)strategy is adopted to reduce torque ripple and improve the control performance of the system.The mathematical model of model reference adaptive system(MRAS)of FP-PMSM is derived and a method based on fractional order sliding mode(FOSM)is proposed to construct the model reference adaptive system(FOSMMRAS)to improve the motor speed estimation accuracy and eliminate the sliding mode integral saturation effect.The simulation results show that the FP-PMSM speed sensorless FCS-MPTC system based on FOSM-MRAS has strong robustness,good dynamic performance and static performance,and high reliability.
文摘Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273088,10971120,and 61001099)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金supported by National Natural Science Foundation of China (No. 69774011)
文摘A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.
基金Project(2011AA11A10102) supported by the High-tech Research and Development Program of China
文摘A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.
基金National Natural Science Foundation of China(Grant Nos.51575176,11672106,51775030,51875196)Youth Innovative Talents of Hunan Province of China(Grant No.2015RS4043)
文摘Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). There are very few research works that focus on the magnitude e ects on such induced unbalance vibration. In this paper, a finite element model(FEM) is developed to characterize a realistic automotive TC rotor with floating ring bearings(FRBs). The nonlinear dynamic responses of the TC rotor system with di erent levels of induced unbalance magni?tude in compressor and turbine wheels are calculated. From the results of waterfall and response spectral intensity plots, the bifurcation and instability phenomena depend on unbalance magnitude during the startup of TC. The sub?synchronous component 0.12× caused rotor unstable is the dominant frequency for small induced unbalance. The nonlinear e ects of induced unbalance in the turbine wheel is obvious stronger than the compressor wheel. As the unbalance magnitude increases from 0.05 gbration 1·mm to 0.2 g·mm, the vibration component changes from mainly 0.12× to synchronous vi×. When unbalance increases continuously, the rotor vibration response amplitude is rapidly growing and the 1× caused by the large unbalance excitation becomes the dominant frequency. A suitable un?balance magnitude of turbine wheel and compressor wheel for the high?speed TC rotor with FRBs is proposed: the value of induced un?balance magnitude should be kept around 0.2 g·mm.
基金the National Natural Science Foundation of China under Grant No 60604007.
文摘The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operation of motor-driven. Hence, it is important to study the methods of controlling or suppressing chaos in PMSMs. In this work, the Takagi-Sugeno (T-S) fuzzy impulsive control model for PMSMs is established via the T-S modelling methodology and impulsive technology. Based on the new model, the control conditions of asymptotieal stability and exponential stability for PMSMs have been derived by the Lyapunov method. Finaily, an illustrated example is also given to show the effectiveness of the obtained results.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
基金Open Fund Project of State Key Laboratory of Large Electric Transmission Systems and Equipment Technology(No.2012AA052903)
文摘Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-Technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)。
文摘Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.