期刊文献+
共找到5,077篇文章
< 1 2 250 >
每页显示 20 50 100
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
1
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun multi-physics field coupling Experimental validation PFN
下载PDF
Research on heat dissipation characteristics of magnetic fluid bearings under multiple field coupling effects
2
作者 CHEN Liwen WU Weiying +2 位作者 GAO Dianrong ZHAO Jianhua CUI Bingyan 《High Technology Letters》 EI CAS 2024年第3期263-270,共8页
This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat fl... This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat flux density,and analyzes the overall heat dissipation pathways of the bearings.By changing parameters such as input current,rotor speed,and inlet oil flow rate,the study applies a multi-physics field coupling method to investigate the influence of different parameters on the temper-ature field and heat dissipation patterns of the bearings,which is then validated through experi-ments.This research provides a theoretical basis for the optimal design of magnetic fluid bearing sys-tems. 展开更多
关键词 magnetic fluid bearing multi-physics field coupling multiple parameter varia-tion heat dissipation pattern
下载PDF
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers 被引量:2
3
作者 Andergachew Mekonnen Berhe Khalil As’ham +2 位作者 Ibrahim Al-Ani Haroldo T.Hattori Andrey E.Miroshnichenko 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期20-32,共13页
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo... Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature. 展开更多
关键词 catenary-shaped field enhancement strong coupling PLASMON EXCITON Rabi splitting
下载PDF
Multi-Physics Coupled Acoustic-Mechanics Analysis and Synergetic Optimization for a Twin-Fluid Atomization Nozzle
4
作者 Wenying Li Yanying Li +4 位作者 Yingjie Lu Jinhuan Xu Bo Chen Li Zhang Yanbiao Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期204-223,共20页
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul... Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research. 展开更多
关键词 Twin-fluid nozzle BP neural network Multi-objective optimization multi-physics coupled Acousticmechanics analysis Genetic algorithm
下载PDF
Mechanisms of fracture propagation from multi-cluster using a phase field based HMD coupling model in fractured reservoir
5
作者 Yun-Jin Wang Bo Wang +6 位作者 Hang Su Tu Chang Ren-Cheng Dong Li-Zhe Li Wei-Yu Tang Ting-Xue Jiang Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1829-1851,共23页
Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recogni... Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures. 展开更多
关键词 HMD coupling Phase field Natural fracture Flow distribution Hydraulic fracturing Inter-fracture interference
下载PDF
Citation and bibliographic coupling between authors in the field of social network analysis
6
作者 Daria Maltseva Vladimir Batagelj 《Journal of Data and Information Science》 CSCD 2024年第4期110-154,共45页
Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at t... Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time. 展开更多
关键词 Development of scientific fields Social network analysis Bibliographic network Temporal network CITATION Bibliographic coupling
下载PDF
Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor 被引量:4
7
作者 Xiao Luo Chi Wang +4 位作者 Ze-Ren Zou Lian-Kai Cao Shuai Wang Zhao Chen Hong-Li Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第2期40-52,共13页
In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and t... In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained. 展开更多
关键词 multi-physics and multi-scale coupling method User-defined functions Dynamic link library Thermal stratification Lead-cooled fast reactor
下载PDF
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling 被引量:1
8
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
下载PDF
Crustal stress field in Yunnan: implication for crust-mantle coupling 被引量:25
9
作者 Zhigang Xu Zhouchuan Huang +6 位作者 Liangshu Wang Mingjie Xu Zhifeng Ding Pan Wang Ning Mi Dayong Yu Hua Li 《Earthquake Science》 CSCD 2016年第2期105-115,共11页
We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous r... We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere. 展开更多
关键词 TIBET YUNNAN Focal mechanism solution Stress field Crust-mantle coupling
下载PDF
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
10
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor 被引量:10
11
作者 Zhi-Xing Gu Qing-Xian Zhang +4 位作者 Yi Gu Liang-Quan Ge Guo-Qiang Zeng Mu-Hao Zhang Bao-Jie Nie 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第5期84-100,共17页
To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer mo... To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors. 展开更多
关键词 LBE-cooled pool-type reactor Computational fluid dynamics multi-physics coupling code Safety analysis code VERIFICATION
下载PDF
Flow Field and Temperature Field of Water-Cooling-Type Magnetic Coupling 被引量:2
12
作者 Lei Wang Zhenyuan Jia +1 位作者 Yuqin Zhu Li Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第4期61-72,共12页
At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rota... At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design. 展开更多
关键词 Water-cooling MAGNETIC coupling Fluid-solid coupling Channel Three-dimensional TEMPERATURE field
下载PDF
MULTI-FIELD COUPLING BEHAVIOR OF SIMPLY-SUPPORTED CONDUCTIVE PLATE UNDER THE CONDITION OF A TRANSVERSE STRONG IMPULSIVE MAGNETIC FIELD 被引量:3
13
作者 Zhu Linli Zhang Jianping Zheng Xiaojing 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第3期203-211,共9页
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami... In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field. 展开更多
关键词 multi-field coupling conductive thin plate impulsive magnetic field eddy current dynamic buckling magnetic volume forces
下载PDF
Coexisting fast–slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
14
作者 魏熙乐 任泽宇 +2 位作者 卢梅丽 樊亚琴 常思远 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期614-626,共13页
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ... Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues. 展开更多
关键词 hippocampal network EPILEPTIFORM dendritic oscillation traveling wave electric field coupling
下载PDF
Customized modulation on plasma uniformity by non-uniform magnetic field in capacitively coupled plasma
15
作者 王森 张权治 +2 位作者 马方方 Maksudbek YUSUPOV 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期79-87,共9页
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m... A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications. 展开更多
关键词 COMSOL capacitively coupled plasma plasma uniformity magnetic field
下载PDF
Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys:phase-field modeling
16
作者 Chao Xie Shijie Bai +2 位作者 Xiao Liu Minghua Zhang Jianke Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期361-383,共23页
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the... In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. 展开更多
关键词 Phase field Mg alloys Stress-corrosion coupled damage Damage localization Finite element method
下载PDF
Performance analysis of the mutual coupling effect on Phased Array Feeds
17
作者 Kai Wang Maozheng Chen +4 位作者 Jun Ma Hao Yan Liang Cao Xuefeng Duan Jiahui Li 《Astronomical Techniques and Instruments》 CSCD 2024年第4期211-217,共7页
A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual couplin... A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual coupling effect between elements caused by a tightly arranged feed array,which changes the performance of a PAF,this paper presents a 7×7 rectangular feed array model for a 25 m reflector telescope.By adjusting the element spacings,the performance of a PAF with different spacings is comprehensively analyzed with respect to the mutual coupling effect via performance statistics and comparison.This research aims to provide a reference for the preliminary design of a related PAF. 展开更多
关键词 Reflector antenna Focal field Phased array BEAMFORMING Mutual coupling
下载PDF
STUDY OF TOPOLOGY OPTIMIZATION FOR THERMO-STRUCTURAL COUPLING FIELD 被引量:1
18
作者 Zuo Kongtian Qian Qin +1 位作者 Zhao Yudong Chen Liping 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第4期357-364,共8页
A number of critical problems of topology optimization concerning the thermostructural coupling field axe studied at length. The governing equations and topology optimization model for the thermal-structural coupling ... A number of critical problems of topology optimization concerning the thermostructural coupling field axe studied at length. The governing equations and topology optimization model for the thermal-structural coupling field axe derived, with an adjoint method for sensitivity analysis of the thermo-structural coupling field proposed. The optimization algorithm for coupling field topology optimization is investigated and a flowchart of coupling field topology optimization presented. The theory and algorithms axe implemented and verified by two numerical examples. 展开更多
关键词 thermo-structural coupling field topology optimization sensitivity analysis numerical calculation
下载PDF
The role of local field potential coupling in epileptic synchronization 被引量:1
19
作者 Jiongxing Wu Heng Yang +3 位作者 Yufeng Peng Liangjuan Fang Wen Zheng Zhi Song 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第8期745-753,共9页
This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network ... This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset. 展开更多
关键词 neural regeneration REVIEWS EPILEPSY NEURONS synchronized discharge neural network extracellular space local potential coupling field potentials cell excitation threshold value grants-supported paper NEUROREGENERATION
下载PDF
Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field 被引量:1
20
作者 Rui Zhang Yuan-Chuan Biao +3 位作者 Wen-Long You Xiao-Guang Wang Yu-Yu Zhang Zi-Xiang Hu 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第7期122-129,共8页
We introduce a generalized Rashba coupling approximation to analytically solve confined two-dimensional electron systems with both the Rashba and Dresselhaus spin–orbit couplings in an external magnetic field.A solva... We introduce a generalized Rashba coupling approximation to analytically solve confined two-dimensional electron systems with both the Rashba and Dresselhaus spin–orbit couplings in an external magnetic field.A solvable Hamiltonian is obtained by performing a simple change of basis,which has the same form as that with only Rashba coupling.Each Landau state becomes a new displaced-Fock state instead of the original Harmonic oscillator Fock state.Analytical energies are consistent with the numerical ones in a wide range of coupling strength even for a strong Zeeman splitting,exhibiting the validity of the analytical approximation.By using the eigenstates,spin polarization correctly displays a jump at the energy-level crossing point,where the corresponding spin conductance exhibits a pronounced resonant peak.As the component of the Dresselhaus coupling increases,the resonant point shifts to a smaller value of the magnetic field.In contrast to pure Rashba couplings,we find that the Dresselhaus coupling and Zeeman splittings tend to suppress the resonant spin Hall effect.Our method provides an easy-to-implement analytical treatment to two-dimensional electron gas systems with both types of spin–orbit couplings by applying a magnetic field. 展开更多
关键词 field coupling RESONANT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部