期刊文献+
共找到21,018篇文章
< 1 2 250 >
每页显示 20 50 100
Application of multi-scale feature extraction to surface defect classification of hot-rolled steels 被引量:7
1
作者 Ke Xu Yong-hao Ai Xiu-yong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期37-41,共5页
Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) wer... Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%. 展开更多
关键词 hot rolling strip metal surface defects CLASSIFICATION feature extraction
下载PDF
Multi-Scale Feature Extraction for Joint Classification of Hyperspectral and LiDAR Data
2
作者 Yongqiang Xi Zhen Ye 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期13-22,共10页
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da... With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods. 展开更多
关键词 hyperspectral image(HSI) light detection and ranging(LiDAR) multi-scale feature classification
下载PDF
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
3
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 Pietro Lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 multi-scale Principal Component Analysis Discrete WAVELET TRANSFORM feature extraction Signal CLASSIFICATION Empirical CLASSIFICATION
下载PDF
WMA:A Multi-Scale Self-Attention Feature Extraction Network Based on Weight Sharing for VQA 被引量:1
4
作者 Yue Li Jin Liu Shengjie Shang 《Journal on Big Data》 2021年第3期111-118,共8页
Visual Question Answering(VQA)has attracted extensive research focus and has become a hot topic in deep learning recently.The development of computer vision and natural language processing technology has contributed t... Visual Question Answering(VQA)has attracted extensive research focus and has become a hot topic in deep learning recently.The development of computer vision and natural language processing technology has contributed to the advancement of this research area.Key solutions to improve the performance of VQA system exist in feature extraction,multimodal fusion,and answer prediction modules.There exists an unsolved issue in the popular VQA image feature extraction module that extracts the fine-grained features from objects of different scale difficultly.In this paper,a novel feature extraction network that combines multi-scale convolution and self-attention branches to solve the above problem is designed.Our approach achieves the state-of-the-art performance of a single model on Pascal VOC 2012,VQA 1.0,and VQA 2.0 datasets. 展开更多
关键词 VQA feature extraction self-attention FINE-GRAINED
下载PDF
Multi-Scale Analysis Based Curve Feature Extraction in Reverse Engineering
5
作者 YANG Hongjuan1,ZHOU Yiqi1,CHEN Chengjun1,ZHAO Zhengxu2 (1.School of Mechanical Engineering,Shandong University,Shandong,China 2.School of Computing,University of Derby,Kedleston Road,Derby DE22 1GB,UK) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期85-89,共5页
A sectional curve feature extraction algorithm based on multi-scale analysis is proposed for reverse engineering. The algorithm consists of two parts: feature segmentation and feature classification. In the first part... A sectional curve feature extraction algorithm based on multi-scale analysis is proposed for reverse engineering. The algorithm consists of two parts: feature segmentation and feature classification. In the first part,curvature scale space is applied to multi-scale analysis and original feature detection. To obtain the primary and secondary curve primitives,feature fusion is realized by multi-scale feature detection information transmission. In the second part: projection height function is presented based on the area of quadrilateral,which improved criterions of sectional curve feature classification. Results of synthetic curves and practical scanned sectional curves are given to illustrate the efficiency of the proposed algorithm on feature extraction. The consistence between feature extraction based on multi-scale curvature analysis and curve primitives is verified. 展开更多
关键词 feature extraction CURVATURE scale space PROJECTION HEIGHT REVERSE engineering
下载PDF
Feature extraction for machine learning-based intrusion detection in IoT networks 被引量:1
6
作者 Mohanad Sarhan Siamak Layeghy +2 位作者 Nour Moustafa Marcus Gallagher Marius Portmann 《Digital Communications and Networks》 SCIE CSCD 2024年第1期205-216,共12页
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ... A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field. 展开更多
关键词 feature extraction Machine learning Network intrusion detection system IOT
下载PDF
Automatic Extraction Method of 3D Feature Guidelines for Complex Cultural Relic Surfaces Based on Point Cloud 被引量:1
7
作者 GENG Yuxin ZHONG Ruofei +1 位作者 HUANG Yuqin SUN Haili 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期16-41,共26页
Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduct... Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics. 展开更多
关键词 point cloud conformal parameterization vertex weight surface mesh cultural relics feature extraction
下载PDF
MSD-Net: Pneumonia Classification Model Based on Multi-Scale Directional Feature Enhancement
8
作者 Tao Zhou Yujie Guo +3 位作者 Caiyue Peng Yuxia Niu Yunfeng Pan Huiling Lu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4863-4882,共20页
Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f... Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis. 展开更多
关键词 PNEUMONIA X-ray image ResNet multi-scale feature direction feature TRANSFORMER
下载PDF
Anomaly Detection in Imbalanced Encrypted Traffic with Few Packet Metadata-Based Feature Extraction
9
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期585-607,共23页
In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly d... In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly detection using AI(Artificial Intelligence)is actively progressing,the encrypted nature of the data poses challenges for labeling,resulting in data imbalance and biased feature extraction toward specific nodes.This study proposes a reconstruction error-based anomaly detection method using an autoencoder(AE)that utilizes packet metadata excluding specific node information.The proposed method omits biased packet metadata such as IP and Port and trains the detection model using only normal data,leveraging a small amount of packet metadata.This makes it well-suited for direct application in IoT environments due to its low resource consumption.In experiments comparing feature extraction methods for AE-based anomaly detection,we found that using flowbased features significantly improves accuracy,precision,F1 score,and AUC(Area Under the Receiver Operating Characteristic Curve)score compared to packet-based features.Additionally,for flow-based features,the proposed method showed a 30.17%increase in F1 score and improved false positive rates compared to Isolation Forest and OneClassSVM.Furthermore,the proposedmethod demonstrated a 32.43%higherAUCwhen using packet features and a 111.39%higher AUC when using flow features,compared to previously proposed oversampling methods.This study highlights the impact of feature extraction methods on attack detection in imbalanced,encrypted traffic environments and emphasizes that the one-class method using AE is more effective for attack detection and reducing false positives compared to traditional oversampling methods. 展开更多
关键词 One-class anomaly detection feature extraction auto-encoder encrypted traffic CICIoT2023
下载PDF
CMMCAN:Lightweight Feature Extraction and Matching Network for Endoscopic Images Based on Adaptive Attention
10
作者 Nannan Chong Fan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2761-2783,共23页
In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clini... In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness. 展开更多
关键词 feature extraction and matching lightweighted network medical images ENDOSCOPIC ATTENTION
下载PDF
Spatial Distribution Feature Extraction Network for Open Set Recognition of Electromagnetic Signal
11
作者 Hui Zhang Huaji Zhou +1 位作者 Li Wang Feng Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期279-296,共18页
This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri... This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively. 展开更多
关键词 Electromagnetic signal recognition deep learning feature extraction open set recognition
下载PDF
Feature extraction and learning approaches for cancellable biometrics:A survey
12
作者 Wencheng Yang Song Wang +2 位作者 Jiankun Hu Xiaohui Tao Yan Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期4-25,共22页
Biometric recognition is a widely used technology for user authentication.In the application of this technology,biometric security and recognition accuracy are two important issues that should be considered.In terms o... Biometric recognition is a widely used technology for user authentication.In the application of this technology,biometric security and recognition accuracy are two important issues that should be considered.In terms of biometric security,cancellable biometrics is an effective technique for protecting biometric data.Regarding recognition accuracy,feature representation plays a significant role in the performance and reliability of cancellable biometric systems.How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community,especially from researchers of cancellable biometrics.Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance,while the privacy of biometric data is protected.This survey informs the progress,trend and challenges of feature extraction and learning for cancellable biometrics,thus shedding light on the latest developments and future research of this area. 展开更多
关键词 BIOMETRICS feature extraction
下载PDF
Few-shot image recognition based on multi-scale features prototypical network
13
作者 LIU Jiatong DUAN Yong 《High Technology Letters》 EI CAS 2024年第3期280-289,共10页
In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract i... In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively. 展开更多
关键词 few-shot learning multi-scale feature prototypical network channel attention label-smoothing
下载PDF
A three-dimensional feature extraction-based method for coal cleat characterization using X-ray μCT and its application to a Bowen Basin coal specimen
14
作者 Yulai Zhang Matthew Tsang +4 位作者 Mark Knackstedt Michael Turner Shane Latham Euan Macaulay Rhys Pitchers 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期153-166,共14页
Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining indust... Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining industry.Discrete fracture networks(DFNs)are increasingly used in engineering analyses to spatially model fractures at various scales.The reliability of coal DFNs largely depends on the confidence in the input cleat statistics.Estimates of these parameters can be made from image-based three-dimensional(3D)characterization of coal cleats using X-ray micro-computed tomography(m CT).One key step in this process,after cleat extraction,is the separation of individual cleats,without which the cleats are a connected network and statistics for different cleat sets cannot be measured.In this paper,a feature extraction-based image processing method is introduced to identify and separate distinct cleat groups from 3D X-ray m CT images.Kernels(filters)representing explicit cleat features of coal are built and cleat separation is successfully achieved by convolutional operations on 3D coal images.The new method is applied to a coal specimen with 80 mm in diameter and 100 mm in length acquired from an Anglo American Steelmaking Coal mine in the Bowen Basin,Queensland,Australia.It is demonstrated that the new method produces reliable cleat separation capable of defining individual cleats and preserving 3D topology after separation.Bedding-parallel fractures are also identified and separated,which has his-torically been challenging to delineate and rarely reported.A variety of cleat/fracture statistics is measured which not only can quantitatively characterize the cleat/fracture system but also can be used for DFN modeling.Finally,variability and heterogeneity with respect to the core axis are investigated.Significant heterogeneity is observed and suggests that the representative elementary volume(REV)of the cleat groups for engineering purposes may be a complex problem requiring careful consideration. 展开更多
关键词 Cleat separation Cleat statistics feature extraction Discrete fracture network(DFN)modeling
下载PDF
The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction
15
作者 Ramiz Gorkem Birdal 《Computers, Materials & Continua》 SCIE EI 2024年第3期4015-4028,共14页
Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weathe... Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction. 展开更多
关键词 Forecasting solar irradiance air pollution convolutional neural network long short-term memory network mRMR feature extraction
下载PDF
Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy
16
作者 Lili Bai Wenhui Li +3 位作者 He Ren Feng Li TaoYan Lirong Chen 《Computers, Materials & Continua》 SCIE EI 2024年第6期4513-4531,共19页
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac... Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery. 展开更多
关键词 Rotating machinery quantum theory nonlinear quantum permutation entropy Flexible Analytic Wavelet Transform(FAWT) feature extraction
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
17
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution Hierarchical multi-scale feature Fusion
下载PDF
Feature extraction and damage alarming using time series analysis 被引量:4
18
作者 刘毅 李爱群 +1 位作者 费庆国 丁幼亮 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期86-91,共6页
Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis i... Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM. 展开更多
关键词 feature extraction damage alarming time series analysis structural health monitoring
下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
19
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm Support vector machine feature extraction RECOGNITION
下载PDF
ESPRIT-Based Feature Extraction of Helicopter Acoustic Signal
20
作者 周忠来 栗苹 +1 位作者 郑链 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期8-14,共7页
Aim To extract harmonic frequencies of helicopter acoustic signal as features for hel icopter identification. Methods Estimation of signal parameters via rotational invariance techniques(ESPRIT) was selected to ext... Aim To extract harmonic frequencies of helicopter acoustic signal as features for hel icopter identification. Methods Estimation of signal parameters via rotational invariance techniques(ESPRIT) was selected to extract harmonic frequencies from really measured helicopter acoustic signal and an algorithm based on the SVD TLS was used. Results ESPRIT correctly extracted harmonic frequencies of helicopter using the data of limited length under the variousflight conditions. Conclusion ESPRIT is an effective method of extracting harmonic frequencies and using harmonic frequencies of helicopter acoustic signal to recognize helicopter is feasible. 展开更多
关键词 HELICOPTER acoustic signal harmonic frequencies ESPRIT feature extraction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部