Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi...Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.展开更多
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t...In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.展开更多
Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from i...Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.展开更多
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d...The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.展开更多
It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural si...It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.展开更多
Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysica...Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results.展开更多
An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its s...An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its similar versions, and remove the dissimilar pixels. Besides, the curvelet is adopted to adjust the coefficients of these patches with low SSIM. Experiments show that the proposed method has the capacity to denoise effectively, improves the peak signal-to-noise ratio of the image, and keeps better visual result in edges information reservation as well.展开更多
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima...Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods.展开更多
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ...This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.展开更多
In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fat...In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model.展开更多
The structure similarity of secreted proteins in rice blast fungus Magnaporthe oryzae and its host Oryza sativa was analyzed. One thousand two hundred and forty one proteins were predicted as secreted proteins using f...The structure similarity of secreted proteins in rice blast fungus Magnaporthe oryzae and its host Oryza sativa was analyzed. One thousand two hundred and forty one proteins were predicted as secreted proteins using four algorithms based on 11 074 proteins in genome of M. oryzae. One hundred and forty six secreted proteins( 11. 8% of M. oryzae secretome) were aligned with 116 rice proteins( 0. 21% of 56 278 rice proteins) using BLAST search on rice genome. One hundred sixteen rice similar proteins participated in rice cell wall modification( cell wall associated enzymes) and signal transduction( proteases). These results imply that both cell wall involved proteins and signal transduction are probably hijacks pathway between host pants and pathogenic fungi. Because these proteins are highly conserved among fungi and plants,the express patterns of these protein coding genes during the interaction process are valuable to study in detail.展开更多
Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2)....Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2). There have been comprehensive and intensive studies on the applications, the fundamental lattice dynamic and electronic properties, etc., of A15 superconductors. Various reviews on the preparations, structures, and properties have already been written in the last few years. Nevertheless, on account of the large amount of existing facts and views, a coherent view on the relations between the structures and properties has not appeared to unify the facts. This article sketches a multi-scale point of view on the relations between the multi- scale structures and the corresponding properties.展开更多
Because it is hard to search similar structure for low similarity unknown structure proteins directly from the Protein Data Bank (PDB) database, 3D-structure is modeled in this paper for secondary structure regular ...Because it is hard to search similar structure for low similarity unknown structure proteins directly from the Protein Data Bank (PDB) database, 3D-structure is modeled in this paper for secondary structure regular fragments (α-Helices, β-Strands) of such proteins by the protein secondary structure prediction software, the Basic Local Alignment Search Tool (BLAST) and the side chain construction software SCWRL3. First, the protein secondary structure prediction software is adopted to extract secondary structure fragments from the unknown structure proteins. Then, regular fragments are regulated by BLAST based on comparative modeling, providing main chain configurations. Finally, SCWRL3 is applied to assemble side chains for regular fragments, so that 3D-structure of regular fragments of low similarity unknown structure protein is obtained. Regular fragments of several neurotoxins are used for test. Simulation results show that the prediction errors are less than 0.06nm for regular fragments less than 10 amino acids, implying the simpleness and effectiveness of the proposed method.展开更多
The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for...The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.展开更多
With the fast development of computational mechanics and the capacity as well as the speed of modern computers,simulation-based structural optimization has become an indispensable tool in the design process of competi...With the fast development of computational mechanics and the capacity as well as the speed of modern computers,simulation-based structural optimization has become an indispensable tool in the design process of competitive products.This paper presents a brief description of the current status of structural optimization by reviewing some significant progress made in the last decades.Potential research topics are also discussed.The entire literatures of the field are not covered due to the limitation of the length of paper.The scope of this review is limited and closely related to the authors' own research interests.展开更多
When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully develope...When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.展开更多
Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin...Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.展开更多
Detection of the community structure in a network is important for understanding the structure and dynamics of the network.By exploring the neighborhood of vertices,a local similarity metric is proposed,which can be q...Detection of the community structure in a network is important for understanding the structure and dynamics of the network.By exploring the neighborhood of vertices,a local similarity metric is proposed,which can be quickly computed.The resulting similarity matrix retains the same support as the adjacency matrix.Based on local similarity,an agglomerative hierarchical clustering algorithm is proposed for community detection.The algorithm is implemented by an efficient max-heap data structure and runs in nearly linear time,thus is capable of dealing with large sparse networks with tens of thousands of nodes.Experiments on synthesized and real-world networks demonstrate that our method is efficient to detect community structures,and the proposed metric is the most suitable one among all the tested similarity indices.展开更多
Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overc...Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overcoming the existing problems, this paper summarizes three related theories: similarity theory, fuzzy evaluation theory and optimization theory. Based on the related theories, a method of structural bionic design is introduced, which includes four steps: selecting the most useful structural characteristic of natural organism; analyzing the structural characteristic finally chosen for engineering problem; completing the structural bionic design for engineering structure; and verifying the structural bionic design. Similarity theory and fuzzy evaluation theory are employed to achieve Step 1. In Step 2 and Step 3, optimization theory is employed to analyze the parameters of structures. Together with the thoughts of simplification and grouping, optimization theory can reveal the relationship between organism structure and engineering structure, providing a way to structural bionic design. A general evaluation criterion is proposed in Step 4, which is feasible to evaluate the performance of different structures. Finally, based on the method, a structural bionic design of thin-walled cylindrical shell is introduced.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42174063,92155307,41976046)Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology under(No.2022B1212010002)Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong(Guangzhou)(No.GML2019ZD0203)。
文摘Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
基金supported by the Guangxi Science and Technology Plan and Project(Grant Numbers 2021AC19131 and 2022AC21140)Guangxi University of Science and Technology Doctoral Fund Project(Grant Number 20Z40).
文摘In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.
文摘Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.
基金funded by the Natural Science Foundation Committee,China(41364001,41371435)
文摘The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.
文摘It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.
基金supported by the National Key Research and Development Program(Grant No.2021YFA0716100)the National Key Research and Development Program of China Project(Grant No.2018YFC0603502)+1 种基金the Henan Youth Science Fund Program(Grant No.212300410105)the provincial key R&D and promotion special project of Henan Province(Grant No.222102320279).
文摘Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results.
文摘An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its similar versions, and remove the dissimilar pixels. Besides, the curvelet is adopted to adjust the coefficients of these patches with low SSIM. Experiments show that the proposed method has the capacity to denoise effectively, improves the peak signal-to-noise ratio of the image, and keeps better visual result in edges information reservation as well.
基金supported in part by the General Program Hunan Provincial Natural Science Foundation of 2022,China(2022JJ31022)the Undergraduate Education Reform Project of Hunan Province,China(HNJG-20210532)the National Natural Science Foundation of China(62276276)。
文摘Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods.
基金financial support for this research was provided by the Program (Grants 11372060, 91216201) of the National Natural Science Foundation of ChinaProgram (LJQ2015026 ) for Excellent Talents at Colleges and Universities in Liaoning Province+3 种基金the Major National Science and Technology Project (2011ZX02403-002)111 project (B14013)Fundamental Research Funds for the Central Universities (DUT14LK30)the China Scholarship Fund
文摘This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.
文摘In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model.
基金Supported by National Basic Research Program(2012CB722901)Academic Award for Up-and-coming Doctoral Candidates of Yunnan ProvinceYunnan Agricultural University Innovation Foundation for Postgraduate
文摘The structure similarity of secreted proteins in rice blast fungus Magnaporthe oryzae and its host Oryza sativa was analyzed. One thousand two hundred and forty one proteins were predicted as secreted proteins using four algorithms based on 11 074 proteins in genome of M. oryzae. One hundred and forty six secreted proteins( 11. 8% of M. oryzae secretome) were aligned with 116 rice proteins( 0. 21% of 56 278 rice proteins) using BLAST search on rice genome. One hundred sixteen rice similar proteins participated in rice cell wall modification( cell wall associated enzymes) and signal transduction( proteases). These results imply that both cell wall involved proteins and signal transduction are probably hijacks pathway between host pants and pathogenic fungi. Because these proteins are highly conserved among fungi and plants,the express patterns of these protein coding genes during the interaction process are valuable to study in detail.
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2). There have been comprehensive and intensive studies on the applications, the fundamental lattice dynamic and electronic properties, etc., of A15 superconductors. Various reviews on the preparations, structures, and properties have already been written in the last few years. Nevertheless, on account of the large amount of existing facts and views, a coherent view on the relations between the structures and properties has not appeared to unify the facts. This article sketches a multi-scale point of view on the relations between the multi- scale structures and the corresponding properties.
基金Sponsored by the National Natural Science Foundation of China (60374069) and the Excellent Young Scholars Research Fund of Beijing Institute of Technology (000Y01-3).
文摘Because it is hard to search similar structure for low similarity unknown structure proteins directly from the Protein Data Bank (PDB) database, 3D-structure is modeled in this paper for secondary structure regular fragments (α-Helices, β-Strands) of such proteins by the protein secondary structure prediction software, the Basic Local Alignment Search Tool (BLAST) and the side chain construction software SCWRL3. First, the protein secondary structure prediction software is adopted to extract secondary structure fragments from the unknown structure proteins. Then, regular fragments are regulated by BLAST based on comparative modeling, providing main chain configurations. Finally, SCWRL3 is applied to assemble side chains for regular fragments, so that 3D-structure of regular fragments of low similarity unknown structure protein is obtained. Regular fragments of several neurotoxins are used for test. Simulation results show that the prediction errors are less than 0.06nm for regular fragments less than 10 amino acids, implying the simpleness and effectiveness of the proposed method.
文摘The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.
基金supported by the National Natural Science Foundation of China(10472022,10925209,90816025,10802016 and 10902018)the 973 Program of China(2010CB832703).
文摘With the fast development of computational mechanics and the capacity as well as the speed of modern computers,simulation-based structural optimization has become an indispensable tool in the design process of competitive products.This paper presents a brief description of the current status of structural optimization by reviewing some significant progress made in the last decades.Potential research topics are also discussed.The entire literatures of the field are not covered due to the limitation of the length of paper.The scope of this review is limited and closely related to the authors' own research interests.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB720101 and 2012CB720103)the National Natural Science Foundation of China(Grant Nos.11272233,11332006,and 11411130150)
文摘When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.
基金The first author would like to express sincere appreciation for the scholarship provided by China Scholarship Council(No.202006430006)and University of Wollongongfinancially supported by the ACARP Project C28006+1 种基金the National Key Research and Development Program of China(No.2018YFC0808301)the Natural Science Foundation of Beijing Municipality,China(No.8192036)。
文摘Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.
基金Supported by the National Natural Science Foundation of China under Grant No 11001237,and NUDT PRP(No JC110204).
文摘Detection of the community structure in a network is important for understanding the structure and dynamics of the network.By exploring the neighborhood of vertices,a local similarity metric is proposed,which can be quickly computed.The resulting similarity matrix retains the same support as the adjacency matrix.Based on local similarity,an agglomerative hierarchical clustering algorithm is proposed for community detection.The algorithm is implemented by an efficient max-heap data structure and runs in nearly linear time,thus is capable of dealing with large sparse networks with tens of thousands of nodes.Experiments on synthesized and real-world networks demonstrate that our method is efficient to detect community structures,and the proposed metric is the most suitable one among all the tested similarity indices.
基金Supported by National Natural Science Foundation of China (No. 50975012)Research Fund for the Doctoral Program of Higher Education of China (No. 20091102110022)
文摘Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overcoming the existing problems, this paper summarizes three related theories: similarity theory, fuzzy evaluation theory and optimization theory. Based on the related theories, a method of structural bionic design is introduced, which includes four steps: selecting the most useful structural characteristic of natural organism; analyzing the structural characteristic finally chosen for engineering problem; completing the structural bionic design for engineering structure; and verifying the structural bionic design. Similarity theory and fuzzy evaluation theory are employed to achieve Step 1. In Step 2 and Step 3, optimization theory is employed to analyze the parameters of structures. Together with the thoughts of simplification and grouping, optimization theory can reveal the relationship between organism structure and engineering structure, providing a way to structural bionic design. A general evaluation criterion is proposed in Step 4, which is feasible to evaluate the performance of different structures. Finally, based on the method, a structural bionic design of thin-walled cylindrical shell is introduced.