To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ...To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.展开更多
This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.Th...This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimizatio...To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.展开更多
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass...Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.展开更多
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma...In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.展开更多
To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When a...To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang...Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.展开更多
This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)f...This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.展开更多
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fu...The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.展开更多
Objective:To investigate the needs of medical students regarding clinical research curricula to provide scientifically sound offerings and cultivate their clinical research thinking.Methods:From June to October 2022,m...Objective:To investigate the needs of medical students regarding clinical research curricula to provide scientifically sound offerings and cultivate their clinical research thinking.Methods:From June to October 2022,medical students at medical universities in Shaanxi Province were surveyed using online questionnaires.The survey covered their demographic information,awareness of their major,understanding of clinical research,and preferences for curriculum content.Results:A total of 341 valid questionnaires were analyzed.Medical students demonstrated a strong awareness of their majors but a relatively low awareness of clinical research.There was significant demand for clinical research courses,with preferences for professionally oriented(81.8%),market-oriented(100%),theoretically and practically integrated teaching(78.6%),and application-focused(73.0%)courses.Conclusion:Medical colleges and universities should align clinical research curricula with the actual needs of medical students and clinical practice.Reforms in curriculum design and teaching methods are essential to better prepare students for careers in public health.展开更多
Objective: To investigate the current situation of the demand for geriatric care services of community residents in Beijing and analyze the influencing factors to provide a reference basis for meeting the demand for d...Objective: To investigate the current situation of the demand for geriatric care services of community residents in Beijing and analyze the influencing factors to provide a reference basis for meeting the demand for diversified and professional geriatric care services. Methods: A self-made questionnaire was used to randomly survey 1558 elderly individuals at community health service centers in 8 urban districts where elderly care centers were planned to be built. The influencing factors of the different characteristics of elderly care service needs from three aspects were analyzed using a dichotomous logistic regression model: predisposing, enabling, and, need factors. Results: 69.7% of the elderly required home care services, 22.8% wanted to get care services at elderly care centers, 15.9% wanted to get care services at nursing homes, 12.3% required community care services, and 7.4% didn’t know where to access care services. 68.5% of the elderly required care services for disabilities/semi-disabilities, 58.0% for dementia, 54.7% for common diseases, 34.9% for rehabilitation training, 33.0% for plumbing care, and 7.5% for hospice care. At the same time, there were urban- rural differences in the demand for elderly care services, with suburban elderly having a higher demand for care services than those living in urban areas (P < 0.05). The elderly’s demand for care services was mainly related to age, place of residence, and gender in the causative factors, mode of residence and physical condition among able factors, and mode of care services and care needs among need factors (P < 0.05). Conclusion: The demand for elderly care services was differentiated by factors including place of residence, age, and gender. It is crucial to accurately match the demand for elderly care services, innovate the mode of elderly care services, and improve the service quality to improve the elderly health service system.展开更多
Currently,there is a lack of research on the detailed environmental spatial design of community daycare centers at the micro level.This study focuses on Community F in Chongqing,using the elderly’s“willingness to de...Currently,there is a lack of research on the detailed environmental spatial design of community daycare centers at the micro level.This study focuses on Community F in Chongqing,using the elderly’s“willingness to demand”as a central aspect.It examines indoor and outdoor environmental space needs at a micro level,considering both functional requirements and spiritual needs based on existing research.The analysis incorporates three adaptive elements:current construction,surrounding environment,and operational management.It explores the feasibility of restructuring spatial layouts,utilizing local resources,and integrating Bayu cultural characteristics.Finally,through design optimization practices,the study proposes three strategies for aging optimization:functional integration and interaction,user-friendly facilities,and emotional connections to place.展开更多
To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers ...To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.展开更多
Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant plantin...Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant planting and maintenance.”However,with the background of the slowing urbanization process and the widespread demand for composite talents in society,it remains to be verified whether the traditional three major talent training directions in landscape architecture align with the job demands in the current construction market.Based on a survey and analysis of over 300 industry practitioners,this study found a clear trend of merging the three major employment directions into“landscape design and construction”and“landscape plant planting and maintenance.”This presents new requirements and directions for the skill training of landscape architecture majors in universities and provides insights into the alignment between talent training and employment demands in other industries.展开更多
Objective:To identify the group classification of discharged older adults’digital transition care demands and analyze its influencing factors.Methods:From July to August 2022,we used stratified random sampling to rec...Objective:To identify the group classification of discharged older adults’digital transition care demands and analyze its influencing factors.Methods:From July to August 2022,we used stratified random sampling to recruit older patients who were discharged between July 2021 and July 2022 from tertiary hospitals in Shanghai.We used latent profile analysis to classify the older patients into distinct groups based on their service demands:low,medium,and high.We use multiple logistic regression to explore the factors influencing the different demand levels.Results:The degree of discharged older patients’demand was classified as low(Category 1(C1),34.2%),medium(Category 2(C2),49.5%),high-demand levels(Category 3(C3),16.3%).Compared to those have C2,older adults in C1 are more likely to be male(Odds Ratio(OR)=2.81,P=0.02),have 2 chronic diseases(OR=3.91,P=0.03),and are less likely to be junior high and below(OR=0.09,P=0.00),hospitalized for 1–2 times in the past year(1 times:OR=0.19,P=0.07;2 times:OR=0.14,P=0.02),living with children(OR=0.32,P=0.05),have less insurance(OR=0.48,P=0.03),less understanding of digital transitional care(OR=0.47,P=0.01),have less eHealth literacy(OR=0.80,P=0.00),have less degree of importance attributed by family(OR=0.52,P=0.03);Compared to those have medium demand level,older adults in high demand level are more likely to have self and spouse as primary income(self:OR=26.35,P=0.00;spouse:OR=24.06,P=0.02),walking to the nearest health facility(self:6.74,P=0.03),have higher eHealth literacy(OR=1.88,P=0.00),degree of importance within the family(OR=5.19,P=0.01),higher self’s influence on medical decisions-making(OR=5.69.P=0.01).They are less likely to be in 60–79 years group(OR=0.00–0.37,P=0.00–0.03),Household Annual Income<5,000 CNY(OR=0.05,P=0.02).Conclusion:Digital transitional care demands of discharged older patients can be divided into three categories.Constructing a digital transitional care service system that aligns with the demands of discharged older patients is essential.Communication,care plan development,and follow-up are the most fundamental services.Additionally,it is essential to understand the characteristics of high-demand populations to provide tailored services and identify vulnerable populations from health and social perspectives to offer cost-effective transitional care services.展开更多
Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(...Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.展开更多
基金the National Natural Science Foundation of China Youth Fund,Research on Security Low Carbon Collaborative Situation Awareness of Comprehensive Energy System from the Perspective of Dynamic Security Domain(52307130).
文摘To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.
基金supported by the Surface Project of the National Natural Science Foundation of China(No.71273024)the Fundamental Research Funds for the Central Universities of China(2021YJS080).
文摘This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金supported by the Basic Science(Natural Science)Research Project of Jiangsu Higher Education Institutions(No.23KJB470020)the Natural Science Foundation of Jiangsu Province(Youth Fund)(No.BK20230384)。
文摘To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.
文摘Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.
文摘In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China (J2022160,Research on Key Technologies of Distributed Power Dispatching Control for Resilience Improvement of Distribution Networks).
文摘To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
基金Under the auspices of National Natural Science Foundation of China (No.42176221,41901133)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA19060205)Seed project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YIC-E3518907)。
文摘Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.
文摘This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.
文摘The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.
基金Supporting Fund Project of the First Affiliated Hospital of Xi’an Medical University(XYFYPT-2022-02)Scientific and Technological Innovation Team Project of Xi’an Medical University(2021TD14)+1 种基金Postgraduate Education and Teaching Reform Project of Shaanxi Traditional Chinese Medicine University(JGCX003)Education and Teaching Reform Project of Xi’an Medical University(2022JG-67)。
文摘Objective:To investigate the needs of medical students regarding clinical research curricula to provide scientifically sound offerings and cultivate their clinical research thinking.Methods:From June to October 2022,medical students at medical universities in Shaanxi Province were surveyed using online questionnaires.The survey covered their demographic information,awareness of their major,understanding of clinical research,and preferences for curriculum content.Results:A total of 341 valid questionnaires were analyzed.Medical students demonstrated a strong awareness of their majors but a relatively low awareness of clinical research.There was significant demand for clinical research courses,with preferences for professionally oriented(81.8%),market-oriented(100%),theoretically and practically integrated teaching(78.6%),and application-focused(73.0%)courses.Conclusion:Medical colleges and universities should align clinical research curricula with the actual needs of medical students and clinical practice.Reforms in curriculum design and teaching methods are essential to better prepare students for careers in public health.
文摘Objective: To investigate the current situation of the demand for geriatric care services of community residents in Beijing and analyze the influencing factors to provide a reference basis for meeting the demand for diversified and professional geriatric care services. Methods: A self-made questionnaire was used to randomly survey 1558 elderly individuals at community health service centers in 8 urban districts where elderly care centers were planned to be built. The influencing factors of the different characteristics of elderly care service needs from three aspects were analyzed using a dichotomous logistic regression model: predisposing, enabling, and, need factors. Results: 69.7% of the elderly required home care services, 22.8% wanted to get care services at elderly care centers, 15.9% wanted to get care services at nursing homes, 12.3% required community care services, and 7.4% didn’t know where to access care services. 68.5% of the elderly required care services for disabilities/semi-disabilities, 58.0% for dementia, 54.7% for common diseases, 34.9% for rehabilitation training, 33.0% for plumbing care, and 7.5% for hospice care. At the same time, there were urban- rural differences in the demand for elderly care services, with suburban elderly having a higher demand for care services than those living in urban areas (P < 0.05). The elderly’s demand for care services was mainly related to age, place of residence, and gender in the causative factors, mode of residence and physical condition among able factors, and mode of care services and care needs among need factors (P < 0.05). Conclusion: The demand for elderly care services was differentiated by factors including place of residence, age, and gender. It is crucial to accurately match the demand for elderly care services, innovate the mode of elderly care services, and improve the service quality to improve the elderly health service system.
基金Scientific and Technological Research Project of Chongqing Municipal Education Commission:Evaluation and Optimization Research on Planning and Implementation of Community Daycare Centers from the Perspective of Subject-Object Relationship(Project No.KJQN202301901)。
文摘Currently,there is a lack of research on the detailed environmental spatial design of community daycare centers at the micro level.This study focuses on Community F in Chongqing,using the elderly’s“willingness to demand”as a central aspect.It examines indoor and outdoor environmental space needs at a micro level,considering both functional requirements and spiritual needs based on existing research.The analysis incorporates three adaptive elements:current construction,surrounding environment,and operational management.It explores the feasibility of restructuring spatial layouts,utilizing local resources,and integrating Bayu cultural characteristics.Finally,through design optimization practices,the study proposes three strategies for aging optimization:functional integration and interaction,user-friendly facilities,and emotional connections to place.
文摘To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.
基金Yunnan Provincial Department of Education Scientific Research Fund Project“Construction and Development of‘Loose-Leaf’Teaching Material Resources for Landscape Engineering Vocational Education”(Project number:2022J1725)。
文摘Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant planting and maintenance.”However,with the background of the slowing urbanization process and the widespread demand for composite talents in society,it remains to be verified whether the traditional three major talent training directions in landscape architecture align with the job demands in the current construction market.Based on a survey and analysis of over 300 industry practitioners,this study found a clear trend of merging the three major employment directions into“landscape design and construction”and“landscape plant planting and maintenance.”This presents new requirements and directions for the skill training of landscape architecture majors in universities and provides insights into the alignment between talent training and employment demands in other industries.
文摘Objective:To identify the group classification of discharged older adults’digital transition care demands and analyze its influencing factors.Methods:From July to August 2022,we used stratified random sampling to recruit older patients who were discharged between July 2021 and July 2022 from tertiary hospitals in Shanghai.We used latent profile analysis to classify the older patients into distinct groups based on their service demands:low,medium,and high.We use multiple logistic regression to explore the factors influencing the different demand levels.Results:The degree of discharged older patients’demand was classified as low(Category 1(C1),34.2%),medium(Category 2(C2),49.5%),high-demand levels(Category 3(C3),16.3%).Compared to those have C2,older adults in C1 are more likely to be male(Odds Ratio(OR)=2.81,P=0.02),have 2 chronic diseases(OR=3.91,P=0.03),and are less likely to be junior high and below(OR=0.09,P=0.00),hospitalized for 1–2 times in the past year(1 times:OR=0.19,P=0.07;2 times:OR=0.14,P=0.02),living with children(OR=0.32,P=0.05),have less insurance(OR=0.48,P=0.03),less understanding of digital transitional care(OR=0.47,P=0.01),have less eHealth literacy(OR=0.80,P=0.00),have less degree of importance attributed by family(OR=0.52,P=0.03);Compared to those have medium demand level,older adults in high demand level are more likely to have self and spouse as primary income(self:OR=26.35,P=0.00;spouse:OR=24.06,P=0.02),walking to the nearest health facility(self:6.74,P=0.03),have higher eHealth literacy(OR=1.88,P=0.00),degree of importance within the family(OR=5.19,P=0.01),higher self’s influence on medical decisions-making(OR=5.69.P=0.01).They are less likely to be in 60–79 years group(OR=0.00–0.37,P=0.00–0.03),Household Annual Income<5,000 CNY(OR=0.05,P=0.02).Conclusion:Digital transitional care demands of discharged older patients can be divided into three categories.Constructing a digital transitional care service system that aligns with the demands of discharged older patients is essential.Communication,care plan development,and follow-up are the most fundamental services.Additionally,it is essential to understand the characteristics of high-demand populations to provide tailored services and identify vulnerable populations from health and social perspectives to offer cost-effective transitional care services.
基金Under the auspices of National Natural Science Foundation of China (No. 52268008, 51768001)。
文摘Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.