When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for th...In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.展开更多
For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information...For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information fusion technology to extract and fuse the features of cutting vibration signal,cutting force signal and acoustic emission signal in time domain,frequency domain and time-frequency domain,and downscale the sample features by Pearson correlation coefficient to construct a sample data set;then we propose a tool life prediction model based on CNN-SVM optimized by genetic algorithm(GA),which uses CNN convolutional neural network as the feature learner and SVM support vector machine as the trainer for regression prediction.The results show that the improved model in this paper can effectively predict the tool life with better generalization ability,faster network fitting,and 99.85%prediction accuracy.And compared with the BP model,CNN model,SVM model and CNN-SVM model,the performance of the coefficient of determination R2 metric improved by 4.88%,2.96%,2.53%and 1.34%,respectively.展开更多
Based on the information of geology, geochemistry, geophysics and remote sensing, the GIS of multi-source information is used to evaluate Cu, W and Au mineral resources in Northern Qilian, China. As the GIS evaluation...Based on the information of geology, geochemistry, geophysics and remote sensing, the GIS of multi-source information is used to evaluate Cu, W and Au mineral resources in Northern Qilian, China. As the GIS evaluation system works out in the thinking of geological prospecting, its functions include file management, graph edition, database maintenance, information inquiry and comprehensive spatial analysis as well as prospecting target prognosis. Accordingly, the GIS evaluation system can be used directly and conveniently for inquiry and analysis of visual graphs or images.展开更多
Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem...Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.展开更多
Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attr...Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.展开更多
Lower Limb Exoskeletons(LLEs)are receiving increasing attention for supporting activities of daily living.In such active systems,an intelligent controller may be indispensable.In this paper,we proposed a locomotion in...Lower Limb Exoskeletons(LLEs)are receiving increasing attention for supporting activities of daily living.In such active systems,an intelligent controller may be indispensable.In this paper,we proposed a locomotion intention recognition system based on time series data sets derived from human motion signals.Composed of input data and Deep Learning(DL)algorithms,this framework enables the detection and prediction of users’movement patterns.This makes it possible to predict the detection of locomotion modes,allowing the LLEs to provide smooth and seamless assistance.The pre-processed eight subjects were used as input to classify four scenes:Standing/Walking on Level Ground(S/WOLG),Up the Stairs(US),Down the Stairs(DS),and Walking on Grass(WOG).The result showed that the ResNet performed optimally compared to four algorithms(CNN,CNN-LSTM,ResNet,and ResNet-Att)with an approximate evaluation indicator of 100%.It is expected that the proposed locomotion intention system will significantly improve the safety and the effectiveness of LLE due to its high accuracy and predictive performance.展开更多
This paper addresses the challenge of accurately and timely determining the position of a train,with specific consideration given to the integration of the global navigation satellite system(GNSS)and inertial navigati...This paper addresses the challenge of accurately and timely determining the position of a train,with specific consideration given to the integration of the global navigation satellite system(GNSS)and inertial navigation system(INS).To overcome the increasing errors in the INS during interruptions in GNSS signals,as well as the uncertainty associated with process and measurement noise,a deep learning-based method for train positioning is proposed.This method combines convolutional neural networks(CNN),long short-term memory(LSTM),and the invariant extended Kalman filter(IEKF)to enhance the perception of train positions.It effectively handles GNSS signal interruptions and mitigates the impact of noise.Experimental evaluation and comparisons with existing approaches are provided to illustrate the effectiveness and robustness of the proposed method.展开更多
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychologi...BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.展开更多
This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designe...This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designed aims to mitigate the impact of various noise attacks on the integrity of secret information during transmission.The method we propose involves encoding secret images into stylized encrypted images and applies adversarial transfer to both the style and content features of the original and embedded data.This process effectively enhances the concealment and imperceptibility of confidential information,thereby improving the security of such information during transmission and reducing security risks.Furthermore,we have designed a specialized attack layer to simulate real-world attacks and common noise scenarios encountered in practical environments.Through adversarial training,the algorithm is strengthened to enhance its resilience against attacks and overall robustness,ensuring better protection against potential threats.Experimental results demonstrate that our proposed algorithm successfully enhances the concealment and unknowability of secret information while maintaining embedding capacity.Additionally,it ensures the quality and fidelity of the stego image.The method we propose not only improves the security and robustness of information hiding technology but also holds practical application value in protecting sensitive data and ensuring the invisibility of confidential information.展开更多
BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative dif...Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.展开更多
As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic upd...To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.展开更多
Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sol...Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sold to bring in some income. Timely decisions on farm practices such as farm preparation and planting are critical determinants of the seasonal outcomes. In Kenya, most small-scale farmers have no reliable source of information that would help them make timely and accurate decisions. County governments have extension officers who are mandated with giving farmers advisory services to farmers but they are not able to reach most farmers due to facilitation constraints. The mode and format of sharing information is also critical since it’s important to ensure that it’s timely, well-understood and usable. This study sought to assess access to geospatial derived and other crop production information by farmers in four selected counties of Kenya. Specific objectives were to determine the profile of small-scale farmers in terms of age, education and farm size;to determine the type of information that is made available to them by County and Sub-County extension officers including the format and mode of provision;and to determine if the information provided was useful in terms of accuracy, timeliness and adequacy. The results indicated that over 80% of the farmers were over 35 years of age and over 56% were male. Majority had attained primary education (34%) or secondary education (29%) and most farmers in all the counties grew maize (71%). Notably, fellow farmers were a source of information (71%) with the frequency of sharing information being mostly seasonal (37%) and when information was available (43%). Over 66% of interviewed farmers indicating that they faced challenges while using provided information. The results from the study are insightful and helpful in determining effective ways of providing farmers with useful information to ensure maximum benefits.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to ...This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to the growth of quantum complexity and the evolution of entanglement entropy in physical systems. By integrating principles from quantum mechanics, information theory, and holography, we develop a comprehensive theory that explains how time can emerge from timeless quantum processes. Our approach unifies concepts from quantum mechanics, general relativity, and thermodynamics, providing new perspectives on longstanding puzzles such as the black hole information paradox and the arrow of time. We derive modified Friedmann equations that incorporate quantum information measures, offering novel insights into cosmic evolution and the nature of dark energy. The paper presents a series of experimental proposals to test key aspects of this theory, ranging from quantum simulations to cosmological observations. Our framework suggests a deeply information-theoretic view of the universe, challenging our understanding of the nature of reality and opening new avenues for technological applications in quantum computing and sensing. This work contributes to the ongoing quest for a unified theory of quantum gravity and information, potentially with far-reaching implications for our understanding of space, time, and the fundamental structure of the cosmos.展开更多
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金supported by the Science and Technology Project of State Grid Shandong Electric Power Company?“Research on the Data-Driven Method for Energy Internet”?(Project No.2018A-100)。
文摘In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.
基金financed with the means of Basic Scientific Research Youth Program of Education Department of Liaoning Province,No.LJKQZ2021185Yingkou Enterprise and Doctor Innovation Program (QB-2021-05).
文摘For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information fusion technology to extract and fuse the features of cutting vibration signal,cutting force signal and acoustic emission signal in time domain,frequency domain and time-frequency domain,and downscale the sample features by Pearson correlation coefficient to construct a sample data set;then we propose a tool life prediction model based on CNN-SVM optimized by genetic algorithm(GA),which uses CNN convolutional neural network as the feature learner and SVM support vector machine as the trainer for regression prediction.The results show that the improved model in this paper can effectively predict the tool life with better generalization ability,faster network fitting,and 99.85%prediction accuracy.And compared with the BP model,CNN model,SVM model and CNN-SVM model,the performance of the coefficient of determination R2 metric improved by 4.88%,2.96%,2.53%and 1.34%,respectively.
文摘Based on the information of geology, geochemistry, geophysics and remote sensing, the GIS of multi-source information is used to evaluate Cu, W and Au mineral resources in Northern Qilian, China. As the GIS evaluation system works out in the thinking of geological prospecting, its functions include file management, graph edition, database maintenance, information inquiry and comprehensive spatial analysis as well as prospecting target prognosis. Accordingly, the GIS evaluation system can be used directly and conveniently for inquiry and analysis of visual graphs or images.
基金the National Natural Science Foundation of China(Nos.11774073 and 51279033).
文摘Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.
基金co-supported by the National Natural Science Foundation of China(Nos.62233003 and 62073072)the Key Projects of Key R&D Program of Jiangsu Province,China(Nos.BE2020006 and BE2020006-1)the Shenzhen Science and Technology Program,China(Nos.JCYJ20210324132202005 and JCYJ20220818101206014).
文摘Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.
基金the financial support of Shanghai Science and Technology innovation action plan(19DZ2203600).
文摘Lower Limb Exoskeletons(LLEs)are receiving increasing attention for supporting activities of daily living.In such active systems,an intelligent controller may be indispensable.In this paper,we proposed a locomotion intention recognition system based on time series data sets derived from human motion signals.Composed of input data and Deep Learning(DL)algorithms,this framework enables the detection and prediction of users’movement patterns.This makes it possible to predict the detection of locomotion modes,allowing the LLEs to provide smooth and seamless assistance.The pre-processed eight subjects were used as input to classify four scenes:Standing/Walking on Level Ground(S/WOLG),Up the Stairs(US),Down the Stairs(DS),and Walking on Grass(WOG).The result showed that the ResNet performed optimally compared to four algorithms(CNN,CNN-LSTM,ResNet,and ResNet-Att)with an approximate evaluation indicator of 100%.It is expected that the proposed locomotion intention system will significantly improve the safety and the effectiveness of LLE due to its high accuracy and predictive performance.
基金supported by the National Natural Science Foundation of China(Nos.61925302,62273027)the Beijing Natural Science Foundation(L211021).
文摘This paper addresses the challenge of accurately and timely determining the position of a train,with specific consideration given to the integration of the global navigation satellite system(GNSS)and inertial navigation system(INS).To overcome the increasing errors in the INS during interruptions in GNSS signals,as well as the uncertainty associated with process and measurement noise,a deep learning-based method for train positioning is proposed.This method combines convolutional neural networks(CNN),long short-term memory(LSTM),and the invariant extended Kalman filter(IEKF)to enhance the perception of train positions.It effectively handles GNSS signal interruptions and mitigates the impact of noise.Experimental evaluation and comparisons with existing approaches are provided to illustrate the effectiveness and robustness of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
文摘BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.
基金the National Natural Science Foundation of China(Nos.62272478,61872384)Natural Science Foundation of Shanxi Province(No.2023-JC-YB-584)+1 种基金National Natural Science Foundation of China(No.62172436)Engineering University of PAP’s Funding for Scientific Research Innovation Team,Engineering University of PAP’s Funding for Key Researcher(No.KYGG202011).
文摘This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designed aims to mitigate the impact of various noise attacks on the integrity of secret information during transmission.The method we propose involves encoding secret images into stylized encrypted images and applies adversarial transfer to both the style and content features of the original and embedded data.This process effectively enhances the concealment and imperceptibility of confidential information,thereby improving the security of such information during transmission and reducing security risks.Furthermore,we have designed a specialized attack layer to simulate real-world attacks and common noise scenarios encountered in practical environments.Through adversarial training,the algorithm is strengthened to enhance its resilience against attacks and overall robustness,ensuring better protection against potential threats.Experimental results demonstrate that our proposed algorithm successfully enhances the concealment and unknowability of secret information while maintaining embedding capacity.Additionally,it ensures the quality and fidelity of the stego image.The method we propose not only improves the security and robustness of information hiding technology but also holds practical application value in protecting sensitive data and ensuring the invisibility of confidential information.
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32271293 and 11875076)。
文摘Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
文摘To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.
文摘Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sold to bring in some income. Timely decisions on farm practices such as farm preparation and planting are critical determinants of the seasonal outcomes. In Kenya, most small-scale farmers have no reliable source of information that would help them make timely and accurate decisions. County governments have extension officers who are mandated with giving farmers advisory services to farmers but they are not able to reach most farmers due to facilitation constraints. The mode and format of sharing information is also critical since it’s important to ensure that it’s timely, well-understood and usable. This study sought to assess access to geospatial derived and other crop production information by farmers in four selected counties of Kenya. Specific objectives were to determine the profile of small-scale farmers in terms of age, education and farm size;to determine the type of information that is made available to them by County and Sub-County extension officers including the format and mode of provision;and to determine if the information provided was useful in terms of accuracy, timeliness and adequacy. The results indicated that over 80% of the farmers were over 35 years of age and over 56% were male. Majority had attained primary education (34%) or secondary education (29%) and most farmers in all the counties grew maize (71%). Notably, fellow farmers were a source of information (71%) with the frequency of sharing information being mostly seasonal (37%) and when information was available (43%). Over 66% of interviewed farmers indicating that they faced challenges while using provided information. The results from the study are insightful and helpful in determining effective ways of providing farmers with useful information to ensure maximum benefits.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
文摘This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to the growth of quantum complexity and the evolution of entanglement entropy in physical systems. By integrating principles from quantum mechanics, information theory, and holography, we develop a comprehensive theory that explains how time can emerge from timeless quantum processes. Our approach unifies concepts from quantum mechanics, general relativity, and thermodynamics, providing new perspectives on longstanding puzzles such as the black hole information paradox and the arrow of time. We derive modified Friedmann equations that incorporate quantum information measures, offering novel insights into cosmic evolution and the nature of dark energy. The paper presents a series of experimental proposals to test key aspects of this theory, ranging from quantum simulations to cosmological observations. Our framework suggests a deeply information-theoretic view of the universe, challenging our understanding of the nature of reality and opening new avenues for technological applications in quantum computing and sensing. This work contributes to the ongoing quest for a unified theory of quantum gravity and information, potentially with far-reaching implications for our understanding of space, time, and the fundamental structure of the cosmos.