Based on the analysis of the mechanism of wire tension control by using torque motors in the multi-wire saw machining process, some mathematical models of a tension control system are studied, and an adaptive algo- ri...Based on the analysis of the mechanism of wire tension control by using torque motors in the multi-wire saw machining process, some mathematical models of a tension control system are studied, and an adaptive algo- rithm is designed for controlling the wire tension. In this algorithm of tension control, the rotation speeds and waving angle of motors are measured and fed back to the controller, and the NLMS( normalized least mean squares) algorithm is used to calculate the adaptive correction value and control the wire tension accurately. The computer simulation results in Matlab software validate the high accuracy for controlling the system of the wire tension with the NLMS algorithm in the multi-wire saw machining process.展开更多
The building of a large-scale external-target experiment, abbreviated as CEE, in the cooling storage ring at the Heavy Ion Research Facility in Lanzhou has been planned. The CEE is a multi-purpose spectrometer that wi...The building of a large-scale external-target experiment, abbreviated as CEE, in the cooling storage ring at the Heavy Ion Research Facility in Lanzhou has been planned. The CEE is a multi-purpose spectrometer that will be used for various studies on heavy-ion collisions. A multi-wire drift chamber(MWDC) array is the forward tracking detector of the CEE. In this work, GEANT4 simulations were performed for the MWDC forward tracking array with a focus on the track reconstruction algorithm. Combined with the time of flight information,particle identification is achieved. The residue is about 30 μm, while the tracking efficiency is higher than 90%with the current redundancy. In addition, a prototype of the forward tracking system using three MWDCs was assembled and tested using a high-energy proton beam. The firing efficiency of the detector and the reconstruction accuracy of the prototype were derived. The track residue for the protons at about 400 MeV/c is better than 300 μm, meeting the requirements of the CEE. Suggestions for improving the performance of the forward tracking system are given.展开更多
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)...To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.展开更多
基金supported by the National Natural Science Fundproject (50775207)Key Laboratory of E & M (Zhejiang University of Technology) Open Fund project (2009EP017)
文摘Based on the analysis of the mechanism of wire tension control by using torque motors in the multi-wire saw machining process, some mathematical models of a tension control system are studied, and an adaptive algo- rithm is designed for controlling the wire tension. In this algorithm of tension control, the rotation speeds and waving angle of motors are measured and fed back to the controller, and the NLMS( normalized least mean squares) algorithm is used to calculate the adaptive correction value and control the wire tension accurately. The computer simulation results in Matlab software validate the high accuracy for controlling the system of the wire tension with the NLMS algorithm in the multi-wire saw machining process.
基金supported by the National Basic Research Program of China(973)(No.2015CB856903)the National Science Foundation of China(No.U1332207)
文摘The building of a large-scale external-target experiment, abbreviated as CEE, in the cooling storage ring at the Heavy Ion Research Facility in Lanzhou has been planned. The CEE is a multi-purpose spectrometer that will be used for various studies on heavy-ion collisions. A multi-wire drift chamber(MWDC) array is the forward tracking detector of the CEE. In this work, GEANT4 simulations were performed for the MWDC forward tracking array with a focus on the track reconstruction algorithm. Combined with the time of flight information,particle identification is achieved. The residue is about 30 μm, while the tracking efficiency is higher than 90%with the current redundancy. In addition, a prototype of the forward tracking system using three MWDCs was assembled and tested using a high-energy proton beam. The firing efficiency of the detector and the reconstruction accuracy of the prototype were derived. The track residue for the protons at about 400 MeV/c is better than 300 μm, meeting the requirements of the CEE. Suggestions for improving the performance of the forward tracking system are given.
基金Funded by the National Natural Science Foundation of China(No.52378213)the Technology Development Project(No.20201902977180010) of CABR Technology Co.,Ltd。
文摘To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.