Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for ...Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for the HILS system in order to require the real time simulation. This paper presents a fast simulation technique using the domain decomposition method with the iteration in the flexible multibody system in which flexible linkage system and electro-hydraulic drive system are coupled with each other. C 2013 The Chinese Society of Theoretical and Applied Mechanics.[doi:10.1063/2.1301301]展开更多
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather th...A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.展开更多
The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. contain...The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]展开更多
The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of ...The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of the present problem are firstly established by integrating the finite element method and floating frame of reference approach based on the virtual power principle and D'Alembert principle.The process of condensing the elastic DOFs of the obtained finite element model involving the incorporation of the substructure technique and sparse approximate inverse method is tentatively carried out.Then,the motion equations are further solved by virtue of the generalized α method and the Jacobian-free Newton-Krylov technologies.And the superiority of coupled scheme is proven by comparing with the traditional approach.Finally,besides the dynamic behaviors of the considered vehicle model,the time-variations of stresses on the elastic bogie frame's dangerous nodes and the distributions of stresses of bogie frame at some specified moments are synchronously calculated and analyzed.More importantly,the real-time and time-varying cumulative damages of some typical nodes on bogie frame are investigated.展开更多
In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulat...In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulation are used to describe the kinematics of planar deformable bodies. According to the kinematic description of contact conditions, the contact constraint equations of planar flexible bodies are derived. Based on the varying topology technique the impact dynamic equations for a planar multibody system are established. Then the initial conditions of the equations in each contact stage are determined according to the discontinuity theory in continuum mechanics. The experiments between the aluminum rods are performed to check the correctness of the proposed method. Through the comparison between the numerical and experimental results the proposed method is validated. Experimental results also show that the impulse momentum method cannot accurately predict the complex impact dynamic phenomena and the continuous model may lead to a serious error when used to simulate the impact problems with significant wave propagation effects.展开更多
A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional con...A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.展开更多
The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic e...The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.展开更多
Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free sh...Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore,the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.展开更多
Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and t...Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]展开更多
Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the loca...Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.展开更多
Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and act...Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.展开更多
A virtual prototype of high-rise building window cleaning gondola based on multibody system dynamics software MS(2. ADAMS is presented. The rigid bodies are modeled by CAD software and flexible bodies are modeled by ...A virtual prototype of high-rise building window cleaning gondola based on multibody system dynamics software MS(2. ADAMS is presented. The rigid bodies are modeled by CAD software and flexible bodies are modeled by discrete beam method. The whole machine's natural characteristics are analyzed and changed to frequency field. According to the results, the dangerous frequencies are avoided and the design can be optimized and the performance can be improved.展开更多
A general procedure to capture the 'dynanmic Stiffness' is presented in this paper. The governing equations of motion are formulated for an arbitrary flexible body in large overall motion based on Kane's ...A general procedure to capture the 'dynanmic Stiffness' is presented in this paper. The governing equations of motion are formulated for an arbitrary flexible body in large overall motion based on Kane's equations . The linearization is performed peroperly by means of geometrically nonlinear straindisplacement relations and the nonlinear expression of angular velocity so that the 'dynamical stiffness' terms can be captured naturally in a general tcase. The concept and formulations of partial velocity and angular velocity arrays of Huston's method are extended to the flexible body and form the basis of the analysis. The validity and generality of the procedure presented in the paper are verified by numerical results of its application in both the beam and plate models.展开更多
A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a tr...A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a track/soil interaction module called TVAS. The vehicle is modeled as a multibody dynamic system by the use of a multibody dynamic analysis program. The module developed is cooperated with the multibody dynamic analysis program with a user-defined subroutine. The dynamic behavior and the conceptual design of the mining vehicle on the deep seabed are investigated.展开更多
For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and...For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and primary balance shaft should be attached to the cylinder block so that engine durability and ride comfortability may be further improved. Traditionally one third of connecting rod assembly’s mass is treated as reciprocating mass, and two thirds as rotating mass when designing balance mechanism. In this paper, a new method based on the multibody dynamics simulation is introduced to separate the reciprocating mass and rotating mass of connecting rod assembly. The model consists of crankshaft, connecting rod, piston and the simulation is performed subsequently. According to the simulation results of the main bearing loads, the reciprocating mass and rotating mass are separated. Finally a new balance mechanism is designed and simulation results show that it completely balances inertial forces to improve the engine’s noise vibration and harshness performance.展开更多
Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and can...Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.展开更多
Track tension is a major factor influencing the reliability of a track.In order to reduce the risk of track peel-off,it is necessary to keep track tension constant.However,it is difficult to measure the dynamic tensio...Track tension is a major factor influencing the reliability of a track.In order to reduce the risk of track peel-off,it is necessary to keep track tension constant.However,it is difficult to measure the dynamic tension during off-road operation.Based on the analysis of the relation and external forces depending on free body diagrams of the idler,idler arm,road wheel and road arm,a theoretical estimation model of track tension is built.Comparing estimation results with multibody dynamics simulation results,the rationality of track tension monitor is validated.By the aid of this monitor,a track tension control system is designed,which includes a self-tuning proportional-integral-derivative(PID)controller based on radial basis function neural network,an electro-hydraulic servo system and an idler arm.The tightness of track can be adjusted by turning the idler arm.Simulation results of the vehicle starting process indicate that the controller can reach different expected tensions quickly and accurately.Compared with a traditional PID controller,the proposed controller has a stronger anti-disturbance ability by amending control parameters online.展开更多
A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics...A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.展开更多
A discrete model of a rope is developed and used to simulate the plane motion of the rope fixed at one end.Actually,two systems are presented,whose members are rigid but non-ideal joints involve elasticity or dissipat...A discrete model of a rope is developed and used to simulate the plane motion of the rope fixed at one end.Actually,two systems are presented,whose members are rigid but non-ideal joints involve elasticity or dissipation.The dissipation is reflected simply by viscous damping model, whereas the bending stiffness conception is based on the classical curvature-bending moment relationship for beams and simple geometrical formulas.Equations of motion are derived and their complexity is discussed from the computational point of view.Since modified extended backward differentiation formulas(MEBDF)of Cash are implemented to solve the resulting initial value problems,the technique scheme is outlined.Numerical experiments are performed and influences of the elasticity and damping on behaviour of the model are analyzed.Basic energy principles are used to verify the obtained results.展开更多
文摘Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for the HILS system in order to require the real time simulation. This paper presents a fast simulation technique using the domain decomposition method with the iteration in the flexible multibody system in which flexible linkage system and electro-hydraulic drive system are coupled with each other. C 2013 The Chinese Society of Theoretical and Applied Mechanics.[doi:10.1063/2.1301301]
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金This work was financially supported by National Natural Science Foundation of China(Grant No.51809279)Major National Science and Technology Program(Grant No.2016ZX05028-001-05)+3 种基金National Key R&D Program of China(Grant No.2017YFC0804500)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58)the Fundamental Research Funds for the Central Universities(Grant No.20CX02302A)the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(Grant No.20CX02302A)。
文摘A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.
基金supported by the German Research Foundation (DFG) under the Priority Program SPP 1480 'Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes'Subproject 'Modelling and Compensation of Thermal Effects for Short Hole Drilling' (EB 195/12-1)the support of the Institute for Machine Tools as well as the Materials Testing Institute of the University of Stuttgart,providing thern with necessary experimental data
文摘The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]
基金support for the research:National Natural Science Foundation of China(Grant No.11872257 and 11572358)Key Project of Natural Science Foundation of Hebei Province(Grant No.A2020210008)Hebei Provincial Department of Education Youth Top Talents Project(Grant No.BJK2023018).
文摘The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of the present problem are firstly established by integrating the finite element method and floating frame of reference approach based on the virtual power principle and D'Alembert principle.The process of condensing the elastic DOFs of the obtained finite element model involving the incorporation of the substructure technique and sparse approximate inverse method is tentatively carried out.Then,the motion equations are further solved by virtue of the generalized α method and the Jacobian-free Newton-Krylov technologies.And the superiority of coupled scheme is proven by comparing with the traditional approach.Finally,besides the dynamic behaviors of the considered vehicle model,the time-variations of stresses on the elastic bogie frame's dangerous nodes and the distributions of stresses of bogie frame at some specified moments are synchronously calculated and analyzed.More importantly,the real-time and time-varying cumulative damages of some typical nodes on bogie frame are investigated.
基金supported by the National Natural Science Foundation of China (10772113)
文摘In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulation are used to describe the kinematics of planar deformable bodies. According to the kinematic description of contact conditions, the contact constraint equations of planar flexible bodies are derived. Based on the varying topology technique the impact dynamic equations for a planar multibody system are established. Then the initial conditions of the equations in each contact stage are determined according to the discontinuity theory in continuum mechanics. The experiments between the aluminum rods are performed to check the correctness of the proposed method. Through the comparison between the numerical and experimental results the proposed method is validated. Experimental results also show that the impulse momentum method cannot accurately predict the complex impact dynamic phenomena and the continuous model may lead to a serious error when used to simulate the impact problems with significant wave propagation effects.
文摘A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.
文摘The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.
基金supported by the National Natural Science Foundation of China (Grants 11772188, 11132007)
文摘Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore,the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.
基金the Belgian National Fund for Scientific research (FRIA) for its financial support
文摘Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]
基金supported by the National Natural Science Foundation of China (Grants 11132007, 11272203)
文摘Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.
基金supported in part by the National Natural Science Foundation of China (Grants 11290150 and 11290151)
文摘Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.
文摘A virtual prototype of high-rise building window cleaning gondola based on multibody system dynamics software MS(2. ADAMS is presented. The rigid bodies are modeled by CAD software and flexible bodies are modeled by discrete beam method. The whole machine's natural characteristics are analyzed and changed to frequency field. According to the results, the dangerous frequencies are avoided and the design can be optimized and the performance can be improved.
文摘A general procedure to capture the 'dynanmic Stiffness' is presented in this paper. The governing equations of motion are formulated for an arbitrary flexible body in large overall motion based on Kane's equations . The linearization is performed peroperly by means of geometrically nonlinear straindisplacement relations and the nonlinear expression of angular velocity so that the 'dynamical stiffness' terms can be captured naturally in a general tcase. The concept and formulations of partial velocity and angular velocity arrays of Huston's method are extended to the flexible body and form the basis of the analysis. The validity and generality of the procedure presented in the paper are verified by numerical results of its application in both the beam and plate models.
文摘A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a track/soil interaction module called TVAS. The vehicle is modeled as a multibody dynamic system by the use of a multibody dynamic analysis program. The module developed is cooperated with the multibody dynamic analysis program with a user-defined subroutine. The dynamic behavior and the conceptual design of the mining vehicle on the deep seabed are investigated.
基金Supported by National Natural Science Foundation of China (No50575203)
文摘For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and primary balance shaft should be attached to the cylinder block so that engine durability and ride comfortability may be further improved. Traditionally one third of connecting rod assembly’s mass is treated as reciprocating mass, and two thirds as rotating mass when designing balance mechanism. In this paper, a new method based on the multibody dynamics simulation is introduced to separate the reciprocating mass and rotating mass of connecting rod assembly. The model consists of crankshaft, connecting rod, piston and the simulation is performed subsequently. According to the simulation results of the main bearing loads, the reciprocating mass and rotating mass are separated. Finally a new balance mechanism is designed and simulation results show that it completely balances inertial forces to improve the engine’s noise vibration and harshness performance.
基金the National Natural Science Foundations of China(Grant Nos.12102035 and 12125201)the China Postdoctoral Science Foundation(Grant No.2020TQ0042)the Beijing Natural Science Foundation(Grant No.L212008).
文摘Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.
基金The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province(No.BK20190871)Natural Science Foundation of Jiangsu Province(No.BK20190438)for the financial support of this research.
文摘Track tension is a major factor influencing the reliability of a track.In order to reduce the risk of track peel-off,it is necessary to keep track tension constant.However,it is difficult to measure the dynamic tension during off-road operation.Based on the analysis of the relation and external forces depending on free body diagrams of the idler,idler arm,road wheel and road arm,a theoretical estimation model of track tension is built.Comparing estimation results with multibody dynamics simulation results,the rationality of track tension monitor is validated.By the aid of this monitor,a track tension control system is designed,which includes a self-tuning proportional-integral-derivative(PID)controller based on radial basis function neural network,an electro-hydraulic servo system and an idler arm.The tightness of track can be adjusted by turning the idler arm.Simulation results of the vehicle starting process indicate that the controller can reach different expected tensions quickly and accurately.Compared with a traditional PID controller,the proposed controller has a stronger anti-disturbance ability by amending control parameters online.
基金Projects(11772188,11132007,11202126)supported by the National Natural Science Foundation of ChinaProject(11ZR1417000)supported by the Natural Science Foundation of Shanghai,China
文摘A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.
文摘A discrete model of a rope is developed and used to simulate the plane motion of the rope fixed at one end.Actually,two systems are presented,whose members are rigid but non-ideal joints involve elasticity or dissipation.The dissipation is reflected simply by viscous damping model, whereas the bending stiffness conception is based on the classical curvature-bending moment relationship for beams and simple geometrical formulas.Equations of motion are derived and their complexity is discussed from the computational point of view.Since modified extended backward differentiation formulas(MEBDF)of Cash are implemented to solve the resulting initial value problems,the technique scheme is outlined.Numerical experiments are performed and influences of the elasticity and damping on behaviour of the model are analyzed.Basic energy principles are used to verify the obtained results.