Studying the wetting behaviors of multicellular spheroids is crucial in the fields of embryo implantation, cancer propagation, and tissue repair. Existing strategies for controlling the wetting of multicellular sphero...Studying the wetting behaviors of multicellular spheroids is crucial in the fields of embryo implantation, cancer propagation, and tissue repair. Existing strategies for controlling the wetting of multicellular spheroids mainly focus on surface chemistry and substrate rigidity. Although topography is another important feature in the biological micro-environment, its effect on multicellular spheroid wetting has seldom been explored. In this study, the influence of topography on the surface wetting of multicellular spheroids was investigated using subcellular- patterned opal films with controllable colloidal particle diameters (from 200 to 1,500 nm). The wetting of hepatoma carcinoma cellular (Hep G2) spheroids was impaired on opal films compared with that on flat substrates, and the wetting rate decreased as colloidal particle diameter increased. The decrement reached 48.5% when the colloidal particle diameter was 1,500 nm. The subcellular-patterned topography in opal films drastically reduced the cellular mobility in precursor films, especially the frontier cells in the leading edge. The frontier cells failed to form mature focal adhesions and stress fibers on micro-patterned opal films. This was due to gaps between colloidal particles leaving adhesion vacancies, causing weak cell-substrate adhesion and consequent retarded migration of Hep G2 spheroids. Our study manifests the inhibiting effects of subcellular-patterned topography on the wetting behaviors of multicellular spheroids, providing new insight into tissue wetting-associated treatments and biomaterial design.展开更多
Aggregation of freshly isolated adult rat hepatocytes in vitro is important for the construction of artificial liver support system. In the experiment, agar has been used as an extracellular matrix substrate and resul...Aggregation of freshly isolated adult rat hepatocytes in vitro is important for the construction of artificial liver support system. In the experiment, agar has been used as an extracellular matrix substrate and results demonstrate that hepatocytes in serum-free culture展开更多
3D (Three-dimensional) Caco-2 spheroids closely recapitulating in vivo physiological organization of intestinal epithelial cells, provide an excellent in vitro model system to study their pathophysiology and their r...3D (Three-dimensional) Caco-2 spheroids closely recapitulating in vivo physiological organization of intestinal epithelial cells, provide an excellent in vitro model system to study their pathophysiology and their response to stressful stimuli. The objective of this technical note is to provide optimized in vitro experimental protocols for culturing 3D Caco-2 spheroids and for analyzing their cell growth features. An optimized 3D Caco-2 spheroid culturing technique based on a new configuration of the culture medium is provided A methodological approach to determine the distribution of the cell cycle phases in disaggregated Caco-2 spheroids by using cytofluorimetric analysis is also described. The optimized culturing protocol favors 3D Caco-2 spheroid differentiation process, as evaluated by the number of well-differentiated spheroids with a single hollow lumen. The cytofluorimetric analysis allows rapid collection of cell cycle phase data from high numbers of spheroid samples, thus, permitting to estimate their growth dynamics in a relatively short time. The optimized technical approaches described here can be applied in systematic manner to a variety of research activities utilizing 3D Caco-2 spheroids. Ease of use, time and economic saving advantages deriving from these protocols further highlight their potential.展开更多
AIM: To examine the factor(s) involved in differentiation of intestinal macrophages (IMACs) using a recently established in vitro model. METHODS: To test whether soluble or membrane bound factors induce IMAC-different...AIM: To examine the factor(s) involved in differentiation of intestinal macrophages (IMACs) using a recently established in vitro model. METHODS: To test whether soluble or membrane bound factors induce IMAC-differentiation, freshly elutriated monocytes (MO) were incubated with conditioned media or cell membranes of intestinal epithelial cells (IEC) or cultured with IEC in transwell systems. To determine the importance of an active migration of MO, three- dimensional aggregates from a 1:1-mixture of MO and IEC were examined by immunohistochemistry and flow cytometry. Apoptosis was examined by caspase-3 Western blots. Extracellular matrix production in differentiation models was compared by immunohistochemistry. RESULTS: IMAC differentiation was observed in a complex three-dimensional co-culture model (multicellular spheroid, MCS) with IEC after migration of MO into the spheroids. By co-culture of MO with conditioned media or membrane preparations of IEC no IMAC differentiation was induced. Co-culture of MO with IEC in transwell- cultures, with the two cell populations separated by a membrane also did not result in intestinal-like differentiation of MO. In contrast to IEC-spheroids with immigrating MO in mixed MCS of IEC and MO only a small subpopulation of MO was able to survive the seven day culture period. CONCLUSION: Intestinal-like differentiation of MO in vitro is only induced in the complex three-dimensional MCS model after immigration of MO indicating a roleof cell-matrix and/or cell-cell interactions during the differentiation of IMACs.展开更多
基金This research is supported by National Natural Science Foundation of China (Nos. 21425314, 21434009, and 21421061), National Program for Special Support of Eminent Professionals, Beijing Municipal Science & Technology Commission (No. Z161100000116037), and MOST (No. 2013YQ190467).
文摘Studying the wetting behaviors of multicellular spheroids is crucial in the fields of embryo implantation, cancer propagation, and tissue repair. Existing strategies for controlling the wetting of multicellular spheroids mainly focus on surface chemistry and substrate rigidity. Although topography is another important feature in the biological micro-environment, its effect on multicellular spheroid wetting has seldom been explored. In this study, the influence of topography on the surface wetting of multicellular spheroids was investigated using subcellular- patterned opal films with controllable colloidal particle diameters (from 200 to 1,500 nm). The wetting of hepatoma carcinoma cellular (Hep G2) spheroids was impaired on opal films compared with that on flat substrates, and the wetting rate decreased as colloidal particle diameter increased. The decrement reached 48.5% when the colloidal particle diameter was 1,500 nm. The subcellular-patterned topography in opal films drastically reduced the cellular mobility in precursor films, especially the frontier cells in the leading edge. The frontier cells failed to form mature focal adhesions and stress fibers on micro-patterned opal films. This was due to gaps between colloidal particles leaving adhesion vacancies, causing weak cell-substrate adhesion and consequent retarded migration of Hep G2 spheroids. Our study manifests the inhibiting effects of subcellular-patterned topography on the wetting behaviors of multicellular spheroids, providing new insight into tissue wetting-associated treatments and biomaterial design.
文摘Aggregation of freshly isolated adult rat hepatocytes in vitro is important for the construction of artificial liver support system. In the experiment, agar has been used as an extracellular matrix substrate and results demonstrate that hepatocytes in serum-free culture
文摘3D (Three-dimensional) Caco-2 spheroids closely recapitulating in vivo physiological organization of intestinal epithelial cells, provide an excellent in vitro model system to study their pathophysiology and their response to stressful stimuli. The objective of this technical note is to provide optimized in vitro experimental protocols for culturing 3D Caco-2 spheroids and for analyzing their cell growth features. An optimized 3D Caco-2 spheroid culturing technique based on a new configuration of the culture medium is provided A methodological approach to determine the distribution of the cell cycle phases in disaggregated Caco-2 spheroids by using cytofluorimetric analysis is also described. The optimized culturing protocol favors 3D Caco-2 spheroid differentiation process, as evaluated by the number of well-differentiated spheroids with a single hollow lumen. The cytofluorimetric analysis allows rapid collection of cell cycle phase data from high numbers of spheroid samples, thus, permitting to estimate their growth dynamics in a relatively short time. The optimized technical approaches described here can be applied in systematic manner to a variety of research activities utilizing 3D Caco-2 spheroids. Ease of use, time and economic saving advantages deriving from these protocols further highlight their potential.
基金Supported by the Deutsche Forschungsgemeinschaft (SFB585, Ro 1236/3-2)the BMBF Kompetenznetz-CED
文摘AIM: To examine the factor(s) involved in differentiation of intestinal macrophages (IMACs) using a recently established in vitro model. METHODS: To test whether soluble or membrane bound factors induce IMAC-differentiation, freshly elutriated monocytes (MO) were incubated with conditioned media or cell membranes of intestinal epithelial cells (IEC) or cultured with IEC in transwell systems. To determine the importance of an active migration of MO, three- dimensional aggregates from a 1:1-mixture of MO and IEC were examined by immunohistochemistry and flow cytometry. Apoptosis was examined by caspase-3 Western blots. Extracellular matrix production in differentiation models was compared by immunohistochemistry. RESULTS: IMAC differentiation was observed in a complex three-dimensional co-culture model (multicellular spheroid, MCS) with IEC after migration of MO into the spheroids. By co-culture of MO with conditioned media or membrane preparations of IEC no IMAC differentiation was induced. Co-culture of MO with IEC in transwell- cultures, with the two cell populations separated by a membrane also did not result in intestinal-like differentiation of MO. In contrast to IEC-spheroids with immigrating MO in mixed MCS of IEC and MO only a small subpopulation of MO was able to survive the seven day culture period. CONCLUSION: Intestinal-like differentiation of MO in vitro is only induced in the complex three-dimensional MCS model after immigration of MO indicating a roleof cell-matrix and/or cell-cell interactions during the differentiation of IMACs.