In orthogonal frequency division multiplexing (OFDM) based multihop communications, the conventional decodeand-forward (DF) relay scheme severely suffers from the error propagation problem. This drawback is seriou...In orthogonal frequency division multiplexing (OFDM) based multihop communications, the conventional decodeand-forward (DF) relay scheme severely suffers from the error propagation problem. This drawback is serious in multihop networks as errors made by any relay node may fail the decoder at the destination in great chance. In this paper, we propose a bit error rate (BER) modified DF protocol (BMDF) which can be applied to systems where error correction channel coding and M-ary modulation are used. By modeling all links except the last one as a binary symmetric channel (BSC), we derive a log likelihood ratio (LLR) modification function relying only on the accumulated BER of all previous links to be applied to the output of the soft demapper. Furthermore, to reduce the computational complexity and signaling overhead, the modification function is simplified from its original exponential expression and less BERs are delivered between nodes by making successive subcarriers share the same BER. In addition, for situations where the channel state information (CSI) of forward link is available, the proposed BMDF can be further enhanced by combining with subcarrier pairing (SP) and power allocation (PA), where a sorted-channel gain SP scheme and a greedy PA algorithm are proposed. The simulation results verify thesignificant performance improvement to the conventional DF.展开更多
Ultra-Dense Network (UDN) is considered to be the key enabler for realizing capacity goals set by 5G. The major concern in UDN deployment is the backhaul network, which should be scalable, cost-effective, and have s...Ultra-Dense Network (UDN) is considered to be the key enabler for realizing capacity goals set by 5G. The major concern in UDN deployment is the backhaul network, which should be scalable, cost-effective, and have sufficient capacity to support massive small cell traffic. Otherwise, the backhaul can become the bottleneck of the network. In this paper, we propose a wireless backhaul solution for UDN deployment by considering MultiPath-MultiHop (MPMH) backhaul architecture in mmWave frequency band. In addition, we propose a distributed routing scheme to forward the backhaul traffic over the multihop network. Backhaul capacity and line-of-sight probability of the proposed backhaul architecture for various picocell densities were compared with direct, multiple-association, and multihop backhaul schemes under interference limited scenarios in outdoor and indoor small cell deployments. The simulation results indicate that the MPMH mmWave backhaul is the most cost-effective and scalable solution for UDN deployment.展开更多
Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in ...Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is ?xed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases ?rst, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation results.展开更多
In this paper, we propose a clustered multihop cellular network (cMCN) architecture and study its performance using fixed channel assignment (FCA) scheme for uplink transmission. The proposed cMCN using FCA can be...In this paper, we propose a clustered multihop cellular network (cMCN) architecture and study its performance using fixed channel assignment (FCA) scheme for uplink transmission. The proposed cMCN using FCA can be applied with some reuse factors. An analytical model based on Markov chain is developed to analyze its performance and validated through computer simulation. And then, we implement direct peer-to-peer communication (DC) in cMCN by considering more reasonable conditions in practice. DC means that two calls communicate directly instead of going through base stations. The results show that cMCN with FCA can reduce the call blocking probability significantly as compared with the traditional single-hop cellular networks with FCA and can be further reduced by using DC.展开更多
This paper presents the concepts of completely connected network,mean path length and cluster for analysis performance of wireless multihop network,where matrix are used to express topology of network and use a new al...This paper presents the concepts of completely connected network,mean path length and cluster for analysis performance of wireless multihop network,where matrix are used to express topology of network and use a new algorithm to compute the number of cluster in the network.Multiple-input/multiple-output(MIMO) communication promises performance enhancement over conventional single-input/single-output(SISO) technology for the same radiated power,if leveraged in multihop network,MIMO may be able to provide significant network performance improvement in network robustness and in power consumption,this paper analyzes three types of multihop networks employing SISO, MIMO with maximum ratio combining(MRC) and MIMO with maximum ratio transmission(MRT) as link model respectively,and get that using MIMO link model can increase robust,decrease mean path length by simulation.展开更多
Mobile multihop communication network is an important branch of modern mobile communication system, and is an important technical support for ubiquitous communication. The random movement of the nodes makes the networ...Mobile multihop communication network is an important branch of modern mobile communication system, and is an important technical support for ubiquitous communication. The random movement of the nodes makes the networking be more flexible, but the frequently changing topology will decrease the link duration between nodes significantly, which will increase the packets loss probability and affect the network communication performance. Aiming at the problem of declining link duration caused by nomadic characteristics in mobile multihop communication network, four link duration models for possible moving states are established based on different features in real networking process in this paper, which will provide reliable criterion for the optimal routing selection. Model analysis and simulation results show that the reliable route established by the proposed model will effectively extend the link duration, and can enhance the global stability of the mobile multihop information transmission, so as to provide new option to transmission reliability improvement for the mobile communication network.展开更多
Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment,...Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation.展开更多
We present a network programming mechanism that can flexibly and quickly re-task a large multi-hop network of wireless sensor nodes. Our mechanism allows each sensor node to be incrementally reprogrammed with heteroge...We present a network programming mechanism that can flexibly and quickly re-task a large multi-hop network of wireless sensor nodes. Our mechanism allows each sensor node to be incrementally reprogrammed with heterogeneous images of native program code using Rsync block comparison algorithm, point-to-point routing with the BLIP IPv6 stack, and image volume management with Deluge2. With our re-tasking method, we demonstrate an order of magnitude speed-up on small code changes over non-incremental delivery. Our mechanism also scales sub-linearly in the diameter of the network. Collectively, these advancements qualitatively change the software life cycle of the embedded networked systems.展开更多
Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station ...Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station using inbuilt transceiver.For reducing energy consumption and lengthen lifetime of WSN,multihop routing protocols can be designed.This study develops an improved rat swarm optimization based energy aware multi-hop routing(IRSO-EAMHR)protocol for WSN.An important intention of the IRSO-EAMHR method is for determining optimal routes to base station(BS)in the clustered WSN.Primarily,a weighted clustering process is performed to group the nodes into clusters and select cluster heads(CHs).Next,the IRSO-EAMHR approach derives afitness function containing three input parameters(residual energy,dis-tance,and node degree)for routing process.The IRSO technique was designed by the integration of Levy movement concepts into the traditional RSO algorithm.The experimental result analysis of the IRSO-EAMHR technique is carried out and the outcomes are examined in various aspects.The simulation outcomes demonstrate the promising performance of the IRSO-EAMHR technique over the recent state of art approaches.展开更多
Intelligent communication technologies beyond the network are pro-posed by using a new full-duplex protocol.The Media Access Control(MAC)is a data interaction network protocol,which outperforms the IEEE 802.15.4e.This...Intelligent communication technologies beyond the network are pro-posed by using a new full-duplex protocol.The Media Access Control(MAC)is a data interaction network protocol,which outperforms the IEEE 802.15.4e.This research discusses the planning and execution of full-duplex(FD)pipeline MAC protocol for multihop wireless networks(MWN).The design uses a com-bination of Radio frequency and baseband methods to realize full-duplexing with smallest impact on cross layer functions.The execution and trial results specify that Pipeline Media Access Control(PiMAC)protocol considerably develops net-work implementation in terms of transmission protocol(TP)and transmission delay.The advantage of using FD-MAC will increase the range of nodes.Also takes benefit of the FD mode of the antenna,which outperforms additionally 80%for all assessed cases.In this analysis,it was considered of that Psz=8184 bits and Rc=1Mbps;that’s,T_(DATA) represents an excellent portion of total UTC.Tests on real nodes displays that the FD theme achieves a median gain of 90%in mix-ture throughput as equated to half-duplex(HD)theme for MWN.The energy con-sumption of proposed system method is 29.8%reduced when compared with existing system method.展开更多
Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generat...Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.展开更多
Performance evaluation of spectrum sensing in infrastructure based multihop network is very hard to achieve because of the adverse effects of channel fading. In this paper, performance of a multihop link is studied ov...Performance evaluation of spectrum sensing in infrastructure based multihop network is very hard to achieve because of the adverse effects of channel fading. In this paper, performance of a multihop link is studied over Nakagami-m distribution. It provides the exact theoretical methodology for the performance analysis of spectrum sensing by evaluating detection probability. Using a cascaded multihop model, the end-to-end Signal to Noise Ratio (SNR) is given over Nakagami-m distribution. In the analysis, multihop model based on relays are considered over independent and not identically distributed (i.n.i.d) wireless channels. Simulation results show the effect of increase in number of hops on probability of detection for multihop links. Subsequent to the thorough fading severity analysis, it has been accomplished that spectrum hole detection is more crucial at lower SNR values with large number of hops.展开更多
The collaboration of at least a threshold number of secret shareholders in a threshold secret sharing scheme is a strict requirement to ensure its intended functionality. Due to its promising characteristics, such a s...The collaboration of at least a threshold number of secret shareholders in a threshold secret sharing scheme is a strict requirement to ensure its intended functionality. Due to its promising characteristics, such a scheme has been proposed to solve a range of security problems in mobile ad hoc networks. However, discovering a sufficient number of secret shareholders in such dynamic and unpredictable networks is not easy. In this paper, we propose a more efficient shareholder discovery mechanism compared to our previous work. The discovery process is performed in a multihop fashion to adapt to the mobile ad hoc network environment. We introduce batch extension that gradually extends the shareholders' collaboration boundary by more than one hop at a time around the service requestor, to find at least the threshold number of the unknown shareholders. Through the batch extension, reply aggregation is applicable, hence reducing the redundancy use of reply routes, decreasing the required packet transmission, and lessening the service delay, compared to the previously proposed mechanism. Our simulation results show that, with the appropriate batch size, the latest mechanism is more efficient with an insignificant increase of control overhead.展开更多
This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conve...This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization (NUM) problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.展开更多
As a promising future network architecture, named data networking(NDN) has been widely considered as a very appropriate network protocol for the multihop wireless network(MWN). In named-data MWNs, congestion control i...As a promising future network architecture, named data networking(NDN) has been widely considered as a very appropriate network protocol for the multihop wireless network(MWN). In named-data MWNs, congestion control is a critical issue. Independent optimization for congestion control may cause severe performance degradation if it can not cooperate well with protocols in other layers. Cross-layer congestion control is a potential method to enhance performance. There have been many cross-layer congestion control mechanisms for MWN with Internet Protocol(IP). However, these cross-layer mechanisms for MWNs with IP are not applicable to named-data MWNs because the communication characteristics of NDN are different from those of IP. In this paper, we study the joint congestion control, forwarding strategy, and link scheduling problem for named-data MWNs. The problem is modeled as a network utility maximization(NUM) problem. Based on the approximate subgradient algorithm, we propose an algorithm called ‘jointly optimized congestion control, forwarding strategy, and link scheduling(JOCFS)'to solve the NUM problem distributively and iteratively. To the best of our knowledge, our proposal is the first cross-layer congestion control mechanism for named-data MWNs. By comparison with the existing congestion control mechanism, JOCFS can achieve a better performance in terms of network throughput, fairness, and the pending interest table(PIT) size.展开更多
This article integrates the hierarchical micro-mobility management and the high-speed multihop access networks (HMAN), to accomplish the smooth handover between different access reuters. The proposed soft handover s...This article integrates the hierarchical micro-mobility management and the high-speed multihop access networks (HMAN), to accomplish the smooth handover between different access reuters. The proposed soft handover scheme in the high-speed HMAN can solve the micro-mobility management problem in the access network. This article also proposes the hybrid access muter (AR) advertisement scheme and AR selection algorithm, which uses the time delay and stable route to the AR as the gateway selection parameters. By simulation, the proposed micro-mobility,management scheme can achieve high packet delivery fraction and improve the lifetime of network.展开更多
We propose an adaptive fractional window increasing algorithm (AFW) to improve the performance of the fractional window increment (FeW) in (Nahm et al., 2005). AFW fully utilizes the bandwidth when the network is idle...We propose an adaptive fractional window increasing algorithm (AFW) to improve the performance of the fractional window increment (FeW) in (Nahm et al., 2005). AFW fully utilizes the bandwidth when the network is idle, and limits the op-erating window when the network is congested. We evaluate AFW and compare the total throughput of AFW with that of FeW in different scenarios over chain, grid, random topologies and with hybrid traffics. Extensive simulation through ns2 shows that AFW obtains 5% higher throughput than FeW, whose throughput is significantly higher than that of TCP-Newreno, with limited modi-fications.展开更多
Closed-form bounds for the end-to-end performance of multihop communications with non-regenerative relays over Nakagami-m fading channels are investigated.Upper and lower bounds of the end-to-end signal-to-noise ratio...Closed-form bounds for the end-to-end performance of multihop communications with non-regenerative relays over Nakagami-m fading channels are investigated.Upper and lower bounds of the end-to-end signal-to-noise ratio(SNR)are first developed by using the monotonicity.Then,the probability density functions(PDFs),the cumulative distribution functions,and the momentgenerating functions(MGFs)of the bounds are derived.Using these results,the bounds for the outage and average bit error probability(ABEP)are obtained.Numerical and simulation results are executed to validate the tightness of the proposed bounds.展开更多
Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Del...Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.展开更多
基金The authors would like to thank National Natural Science Foundation of China (No. 61072059).
文摘In orthogonal frequency division multiplexing (OFDM) based multihop communications, the conventional decodeand-forward (DF) relay scheme severely suffers from the error propagation problem. This drawback is serious in multihop networks as errors made by any relay node may fail the decoder at the destination in great chance. In this paper, we propose a bit error rate (BER) modified DF protocol (BMDF) which can be applied to systems where error correction channel coding and M-ary modulation are used. By modeling all links except the last one as a binary symmetric channel (BSC), we derive a log likelihood ratio (LLR) modification function relying only on the accumulated BER of all previous links to be applied to the output of the soft demapper. Furthermore, to reduce the computational complexity and signaling overhead, the modification function is simplified from its original exponential expression and less BERs are delivered between nodes by making successive subcarriers share the same BER. In addition, for situations where the channel state information (CSI) of forward link is available, the proposed BMDF can be further enhanced by combining with subcarrier pairing (SP) and power allocation (PA), where a sorted-channel gain SP scheme and a greedy PA algorithm are proposed. The simulation results verify thesignificant performance improvement to the conventional DF.
基金This work was supported in part by the National Science Foundation for Distinguished Young Scholars of China with Grant number 61325004 as well as the National Science Foundation of China with Grants 61771216 and 61601191.
文摘Ultra-Dense Network (UDN) is considered to be the key enabler for realizing capacity goals set by 5G. The major concern in UDN deployment is the backhaul network, which should be scalable, cost-effective, and have sufficient capacity to support massive small cell traffic. Otherwise, the backhaul can become the bottleneck of the network. In this paper, we propose a wireless backhaul solution for UDN deployment by considering MultiPath-MultiHop (MPMH) backhaul architecture in mmWave frequency band. In addition, we propose a distributed routing scheme to forward the backhaul traffic over the multihop network. Backhaul capacity and line-of-sight probability of the proposed backhaul architecture for various picocell densities were compared with direct, multiple-association, and multihop backhaul schemes under interference limited scenarios in outdoor and indoor small cell deployments. The simulation results indicate that the MPMH mmWave backhaul is the most cost-effective and scalable solution for UDN deployment.
文摘Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is ?xed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases ?rst, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation results.
文摘In this paper, we propose a clustered multihop cellular network (cMCN) architecture and study its performance using fixed channel assignment (FCA) scheme for uplink transmission. The proposed cMCN using FCA can be applied with some reuse factors. An analytical model based on Markov chain is developed to analyze its performance and validated through computer simulation. And then, we implement direct peer-to-peer communication (DC) in cMCN by considering more reasonable conditions in practice. DC means that two calls communicate directly instead of going through base stations. The results show that cMCN with FCA can reduce the call blocking probability significantly as compared with the traditional single-hop cellular networks with FCA and can be further reduced by using DC.
文摘This paper presents the concepts of completely connected network,mean path length and cluster for analysis performance of wireless multihop network,where matrix are used to express topology of network and use a new algorithm to compute the number of cluster in the network.Multiple-input/multiple-output(MIMO) communication promises performance enhancement over conventional single-input/single-output(SISO) technology for the same radiated power,if leveraged in multihop network,MIMO may be able to provide significant network performance improvement in network robustness and in power consumption,this paper analyzes three types of multihop networks employing SISO, MIMO with maximum ratio combining(MRC) and MIMO with maximum ratio transmission(MRT) as link model respectively,and get that using MIMO link model can increase robust,decrease mean path length by simulation.
基金support by the National Natural Science Foundation of China under Grant No.61302074, 61571181Natural Science Foundation of Heilongjiang Province under Grant No.QC2013C061+2 种基金Modern Sensor Technology Research and Innovation Team Foundation of Heilongjiang Province No. 2012TD007Postdoctoral Research Foundation of Heilongjiang Province No. LBH-Q15121Postgraduate Innovation Research Foundation of Heilongjiang University under Grant No. YJSCX2016-019HLJU
文摘Mobile multihop communication network is an important branch of modern mobile communication system, and is an important technical support for ubiquitous communication. The random movement of the nodes makes the networking be more flexible, but the frequently changing topology will decrease the link duration between nodes significantly, which will increase the packets loss probability and affect the network communication performance. Aiming at the problem of declining link duration caused by nomadic characteristics in mobile multihop communication network, four link duration models for possible moving states are established based on different features in real networking process in this paper, which will provide reliable criterion for the optimal routing selection. Model analysis and simulation results show that the reliable route established by the proposed model will effectively extend the link duration, and can enhance the global stability of the mobile multihop information transmission, so as to provide new option to transmission reliability improvement for the mobile communication network.
基金supported by the Prospective Future Network Project of Jiangsu Province,China(Grant No.BY2013095-1-18)the Independent Project of State Key Laboratory of Millimeter Waves(Grant No.Z201504)
文摘Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation.
文摘We present a network programming mechanism that can flexibly and quickly re-task a large multi-hop network of wireless sensor nodes. Our mechanism allows each sensor node to be incrementally reprogrammed with heterogeneous images of native program code using Rsync block comparison algorithm, point-to-point routing with the BLIP IPv6 stack, and image volume management with Deluge2. With our re-tasking method, we demonstrate an order of magnitude speed-up on small code changes over non-incremental delivery. Our mechanism also scales sub-linearly in the diameter of the network. Collectively, these advancements qualitatively change the software life cycle of the embedded networked systems.
文摘Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station using inbuilt transceiver.For reducing energy consumption and lengthen lifetime of WSN,multihop routing protocols can be designed.This study develops an improved rat swarm optimization based energy aware multi-hop routing(IRSO-EAMHR)protocol for WSN.An important intention of the IRSO-EAMHR method is for determining optimal routes to base station(BS)in the clustered WSN.Primarily,a weighted clustering process is performed to group the nodes into clusters and select cluster heads(CHs).Next,the IRSO-EAMHR approach derives afitness function containing three input parameters(residual energy,dis-tance,and node degree)for routing process.The IRSO technique was designed by the integration of Levy movement concepts into the traditional RSO algorithm.The experimental result analysis of the IRSO-EAMHR technique is carried out and the outcomes are examined in various aspects.The simulation outcomes demonstrate the promising performance of the IRSO-EAMHR technique over the recent state of art approaches.
文摘Intelligent communication technologies beyond the network are pro-posed by using a new full-duplex protocol.The Media Access Control(MAC)is a data interaction network protocol,which outperforms the IEEE 802.15.4e.This research discusses the planning and execution of full-duplex(FD)pipeline MAC protocol for multihop wireless networks(MWN).The design uses a com-bination of Radio frequency and baseband methods to realize full-duplexing with smallest impact on cross layer functions.The execution and trial results specify that Pipeline Media Access Control(PiMAC)protocol considerably develops net-work implementation in terms of transmission protocol(TP)and transmission delay.The advantage of using FD-MAC will increase the range of nodes.Also takes benefit of the FD mode of the antenna,which outperforms additionally 80%for all assessed cases.In this analysis,it was considered of that Psz=8184 bits and Rc=1Mbps;that’s,T_(DATA) represents an excellent portion of total UTC.Tests on real nodes displays that the FD theme achieves a median gain of 90%in mix-ture throughput as equated to half-duplex(HD)theme for MWN.The energy con-sumption of proposed system method is 29.8%reduced when compared with existing system method.
文摘Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.
文摘Performance evaluation of spectrum sensing in infrastructure based multihop network is very hard to achieve because of the adverse effects of channel fading. In this paper, performance of a multihop link is studied over Nakagami-m distribution. It provides the exact theoretical methodology for the performance analysis of spectrum sensing by evaluating detection probability. Using a cascaded multihop model, the end-to-end Signal to Noise Ratio (SNR) is given over Nakagami-m distribution. In the analysis, multihop model based on relays are considered over independent and not identically distributed (i.n.i.d) wireless channels. Simulation results show the effect of increase in number of hops on probability of detection for multihop links. Subsequent to the thorough fading severity analysis, it has been accomplished that spectrum hole detection is more crucial at lower SNR values with large number of hops.
文摘The collaboration of at least a threshold number of secret shareholders in a threshold secret sharing scheme is a strict requirement to ensure its intended functionality. Due to its promising characteristics, such a scheme has been proposed to solve a range of security problems in mobile ad hoc networks. However, discovering a sufficient number of secret shareholders in such dynamic and unpredictable networks is not easy. In this paper, we propose a more efficient shareholder discovery mechanism compared to our previous work. The discovery process is performed in a multihop fashion to adapt to the mobile ad hoc network environment. We introduce batch extension that gradually extends the shareholders' collaboration boundary by more than one hop at a time around the service requestor, to find at least the threshold number of the unknown shareholders. Through the batch extension, reply aggregation is applicable, hence reducing the redundancy use of reply routes, decreasing the required packet transmission, and lessening the service delay, compared to the previously proposed mechanism. Our simulation results show that, with the appropriate batch size, the latest mechanism is more efficient with an insignificant increase of control overhead.
基金supported by the National Natural Science Foundation of China (60971083)the Hi-Tech Research and Development Program of China (2009AA01Z206)the National International Science and Technology Cooperation Project (2010DFA11320)
文摘This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization (NUM) problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.
基金supported by the National High-Tech R&D Program(863)of China(No.2015AA016101)the Beijing Nova Program(No.Z151100000315078)+1 种基金the National Natural Science Foundation of China(No.61501042)the Information Network Open Source Platform and Technology Development Strategy(No.049900617)
文摘As a promising future network architecture, named data networking(NDN) has been widely considered as a very appropriate network protocol for the multihop wireless network(MWN). In named-data MWNs, congestion control is a critical issue. Independent optimization for congestion control may cause severe performance degradation if it can not cooperate well with protocols in other layers. Cross-layer congestion control is a potential method to enhance performance. There have been many cross-layer congestion control mechanisms for MWN with Internet Protocol(IP). However, these cross-layer mechanisms for MWNs with IP are not applicable to named-data MWNs because the communication characteristics of NDN are different from those of IP. In this paper, we study the joint congestion control, forwarding strategy, and link scheduling problem for named-data MWNs. The problem is modeled as a network utility maximization(NUM) problem. Based on the approximate subgradient algorithm, we propose an algorithm called ‘jointly optimized congestion control, forwarding strategy, and link scheduling(JOCFS)'to solve the NUM problem distributively and iteratively. To the best of our knowledge, our proposal is the first cross-layer congestion control mechanism for named-data MWNs. By comparison with the existing congestion control mechanism, JOCFS can achieve a better performance in terms of network throughput, fairness, and the pending interest table(PIT) size.
文摘This article integrates the hierarchical micro-mobility management and the high-speed multihop access networks (HMAN), to accomplish the smooth handover between different access reuters. The proposed soft handover scheme in the high-speed HMAN can solve the micro-mobility management problem in the access network. This article also proposes the hybrid access muter (AR) advertisement scheme and AR selection algorithm, which uses the time delay and stable route to the AR as the gateway selection parameters. By simulation, the proposed micro-mobility,management scheme can achieve high packet delivery fraction and improve the lifetime of network.
基金Project supported by the National Natural Science Foundation of China (Nos. 60625103, 60702046 and 60832005)the Doctoral Fund of MOE of China (No. 20070248095)+3 种基金the China International Science and Technology Cooperation Program (No. 2008DFA11630)the Shanghai Science and Technology PUJIANG Talents Project (No. 08PJ14067)Innovation Key Project (No. 08511500400)the Qualcomm Research Grant
文摘We propose an adaptive fractional window increasing algorithm (AFW) to improve the performance of the fractional window increment (FeW) in (Nahm et al., 2005). AFW fully utilizes the bandwidth when the network is idle, and limits the op-erating window when the network is congested. We evaluate AFW and compare the total throughput of AFW with that of FeW in different scenarios over chain, grid, random topologies and with hybrid traffics. Extensive simulation through ns2 shows that AFW obtains 5% higher throughput than FeW, whose throughput is significantly higher than that of TCP-Newreno, with limited modi-fications.
基金This work was supported by the National Basic Research Program of China(Nos.2007CB310604 and 2009CB320401)the National Natural Science Foundation of China(Grant No.60772108).
文摘Closed-form bounds for the end-to-end performance of multihop communications with non-regenerative relays over Nakagami-m fading channels are investigated.Upper and lower bounds of the end-to-end signal-to-noise ratio(SNR)are first developed by using the monotonicity.Then,the probability density functions(PDFs),the cumulative distribution functions,and the momentgenerating functions(MGFs)of the bounds are derived.Using these results,the bounds for the outage and average bit error probability(ABEP)are obtained.Numerical and simulation results are executed to validate the tightness of the proposed bounds.
文摘Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.