A new method of the multiple rates isotemperature is proposed to define the most probable mechanismg(α) of thermal anlaysis; the iterative isoconversional procedure has been employed to estimate apparent activation e...A new method of the multiple rates isotemperature is proposed to define the most probable mechanismg(α) of thermal anlaysis; the iterative isoconversional procedure has been employed to estimate apparent activation energyE; the pre-exponential factorA is obtained on the basis ofE andg(α). By this new method, the thermal analysis kinetics triplet of dehydration of cobalt oxalate dihydrate is determined, apparent activation energyE is 99.84 kJ·mol?1; pre-exponential factorA is 3.427×109–3.872×109 s?1 and the most probable mechanism belongs to nucleation and growth,A m model, the range ofm is from 1.50 to 1.70. Key words multiple rates isotemperature method - isoconversional method - cobalt oxalate dihydrate - accomodation function - differential scanning calorimetry (DSC) CLC number O 636.1 Foundation item: Supported by the Key Foundation of the Science and Technology Committee of Hubei Province (2001ABA009)Biography: Li Li-qing (1977-), female, Master candidate, research direction: material synthesize and thermal analysis kinetics.展开更多
In this paper, an accelerated iteration method for simultaneously determining of a polynomial equation’s roots is proposed. The new method is an improvement of modified Newton method. At the same time, convergence pr...In this paper, an accelerated iteration method for simultaneously determining of a polynomial equation’s roots is proposed. The new method is an improvement of modified Newton method. At the same time, convergence properties and the order of convergence rate are discussed. At last, some numerical results are reported and listed.展开更多
综合运用多重扫描速率法Popescu法、FWO法和KAS法对煤矸石失重过程的反应机理函数、活化能和指前因子进行了计算与分析.结果表明,煤矸石绝热氧化失重过程中不同失重阶段的反应机理不尽相同.煤矸石外在水分失水和固定碳燃烧失重阶段的反...综合运用多重扫描速率法Popescu法、FWO法和KAS法对煤矸石失重过程的反应机理函数、活化能和指前因子进行了计算与分析.结果表明,煤矸石绝热氧化失重过程中不同失重阶段的反应机理不尽相同.煤矸石外在水分失水和固定碳燃烧失重阶段的反应机理为相边界反应的收缩圆柱体(面积)模型,而煤矸石内在水分失水和挥发分燃烧失重阶段的反应机理则分别为三维扩散模型和相边界反应的收缩球体(体积)模型.外在水分失水、内在水分失水、挥发分燃烧和固定碳燃烧4个失重阶段的活化能和指前因子的自然对数值分别为40.089 k J·mol-1和13.17 s-1,80.326 k J·mol-1和24.49 s-1,133.059 k J·mol-1和18.09 s-1,222.018k J·mol-1和23.68 s-1.展开更多
文摘A new method of the multiple rates isotemperature is proposed to define the most probable mechanismg(α) of thermal anlaysis; the iterative isoconversional procedure has been employed to estimate apparent activation energyE; the pre-exponential factorA is obtained on the basis ofE andg(α). By this new method, the thermal analysis kinetics triplet of dehydration of cobalt oxalate dihydrate is determined, apparent activation energyE is 99.84 kJ·mol?1; pre-exponential factorA is 3.427×109–3.872×109 s?1 and the most probable mechanism belongs to nucleation and growth,A m model, the range ofm is from 1.50 to 1.70. Key words multiple rates isotemperature method - isoconversional method - cobalt oxalate dihydrate - accomodation function - differential scanning calorimetry (DSC) CLC number O 636.1 Foundation item: Supported by the Key Foundation of the Science and Technology Committee of Hubei Province (2001ABA009)Biography: Li Li-qing (1977-), female, Master candidate, research direction: material synthesize and thermal analysis kinetics.
文摘In this paper, an accelerated iteration method for simultaneously determining of a polynomial equation’s roots is proposed. The new method is an improvement of modified Newton method. At the same time, convergence properties and the order of convergence rate are discussed. At last, some numerical results are reported and listed.
文摘综合运用多重扫描速率法Popescu法、FWO法和KAS法对煤矸石失重过程的反应机理函数、活化能和指前因子进行了计算与分析.结果表明,煤矸石绝热氧化失重过程中不同失重阶段的反应机理不尽相同.煤矸石外在水分失水和固定碳燃烧失重阶段的反应机理为相边界反应的收缩圆柱体(面积)模型,而煤矸石内在水分失水和挥发分燃烧失重阶段的反应机理则分别为三维扩散模型和相边界反应的收缩球体(体积)模型.外在水分失水、内在水分失水、挥发分燃烧和固定碳燃烧4个失重阶段的活化能和指前因子的自然对数值分别为40.089 k J·mol-1和13.17 s-1,80.326 k J·mol-1和24.49 s-1,133.059 k J·mol-1和18.09 s-1,222.018k J·mol-1和23.68 s-1.