If all prime closed geodesics on(S^n, F) with an irreversible Finsler metric F are irrationally elliptic,there exist either exactly 2 [(n+1)/2] or infinitely many distinct closed geodesics. As an application, we show ...If all prime closed geodesics on(S^n, F) with an irreversible Finsler metric F are irrationally elliptic,there exist either exactly 2 [(n+1)/2] or infinitely many distinct closed geodesics. As an application, we show the existence of three distinct closed geodesics on bumpy Finsler(S^3, F) if any prime closed geodesic has non-zero Morse index.展开更多
基金National Natural Science Foundation of China (Grant Nos. 11131004, 11471169 and 11401555)the Key Laboratory of Pure Mathematics and Combinatorics of Ministry of Education of China and Nankai University, China Postdoctoral Science Foundation (Grant No. 2014T70589)Chinese Universities Scientific Fund (Grant No. WK0010000037)
文摘If all prime closed geodesics on(S^n, F) with an irreversible Finsler metric F are irrationally elliptic,there exist either exactly 2 [(n+1)/2] or infinitely many distinct closed geodesics. As an application, we show the existence of three distinct closed geodesics on bumpy Finsler(S^3, F) if any prime closed geodesic has non-zero Morse index.