Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver ra...Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.展开更多
Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MB...Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.展开更多
MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective chann...MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective channels. Due to their recursive structure, these receivers may suffer from error propagation which results in an overall mean square error degradation. An MIMO-DFE based BLAST receiver with limited error propagation to combat frequencyselective channel is proposed, which employs both norm constraint on feedback filter taps and soft decision device. Simulation results show that the proposed receiver outperforms conventional ones in various frequency selective channels.展开更多
To mitigate the effects of the previous symbol decision errors of a decision-feedback (DF) equalizer on the current decision, a particle filter (PF) based DF equalizer for frequency selective multiple-input-multip...To mitigate the effects of the previous symbol decision errors of a decision-feedback (DF) equalizer on the current decision, a particle filter (PF) based DF equalizer for frequency selective multiple-input-multiple-output (MIMO) channel is proposed. On the basis of the analyses of DF equalization for the MIMO wireless system, it is found that a stochastic interference cancellation (IC) scheme can be employed to prevent the error propagation in a severe space-time interference scenario. This is because the random rather than the deterministic scheme can reduce the probability of an error decision even if an error decision occurs. Besides, the signal-to-interference-plus-noise ratio (SINR) based IC order, which is obtained via pilot, can guarantee the optimality of the cancellation. The bit error rate (BER) performance of the proposed scheme is verified through simulation experiments under different multipath interference environment.展开更多
For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibi...For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information ( CSI ) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.展开更多
In multiple-input-multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) system, a rate-embedded differential space-time-frequency (DSTF) coding scheme was proposed. Both the conventional space-tim...In multiple-input-multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) system, a rate-embedded differential space-time-frequency (DSTF) coding scheme was proposed. Both the conventional space-time codes and coding techniques in frequency domain were employed to build high rate and low rate space-time-frequency message matrices. Then both types of message matrices were differentially transmitted alternately in the frequency domain. Consequently, the total transmission rate could be improved greatly. At receiver, a simple decision feedback differential detector (SDF-DD) was adopted to further enhance the total error performance with approximate DD complexity. Simulation results verified that the proposed scheme can implement high rate and high reliability differential transmission. Compared with the conventional DSTF coding schemes, the proposed scheme achieves higher spectral efficiency and much better error performance.展开更多
Compared with channel estimation method based on explicit training sequences,bandwidth is saved for those methods using superimposed training sequences,while it is wasted when Cyclic Prefix(CP) is added.In previous wo...Compared with channel estimation method based on explicit training sequences,bandwidth is saved for those methods using superimposed training sequences,while it is wasted when Cyclic Prefix(CP) is added.In previous work of McLernon,the Mean Square Error(MSE) performance of Data-Dependent Superimposed Training(DDST) without CP for Single-Input Single-Output(SISO) system was analyzed under the assumption that the data-dependent sequence matrix was a circulant matrix and not interfered by others.In fact,for the system without CP,the data-dependent sequence matrix is not circulant any more and will be interfered.This paper derives the exact expression of MSE for the system without CP and also gives its extension to Multiple-Input Multiple-Output(MIMO) system without CP.展开更多
In this paper, an idea of using space-time block coding (STBC) in multi-user cooperative diversity has been exploited to improve the performance of the transmission in wireless local area networks. The theoretical and...In this paper, an idea of using space-time block coding (STBC) in multi-user cooperative diversity has been exploited to improve the performance of the transmission in wireless local area networks. The theoretical and simulation results show that, using STBC approaches can always achieve the better performance than existing techniques without introducing the space-time coding. By analyzing the throughput and frame error ratio (FER) of the two different STBC cooperative schemes, we find the trade-off between throughput and reliability. The location of the relay is crucial to the performance, which supposes a rule for future cross-layer design.展开更多
MIMO antenna systems can greatly improve the capacity and transmission rate of wireless communication. In this letter, two four-port multiple-input-multiple-output (MIMO) antenna systems are proposed in mobile devices...MIMO antenna systems can greatly improve the capacity and transmission rate of wireless communication. In this letter, two four-port multiple-input-multiple-output (MIMO) antenna systems are proposed in mobile devices. An algorithm of calculating envelope correlation (ρe) between antenna units is also proposed. By this algorithm the ρe of the PIFA-MIMO antenna system has been calculated. First, a PIFA-MIMO antenna system is designed for ISM (2.4 GHZ) application. The slots are etched on the ground and the antenna units are placed in such a way that the polarization diversity is exploited to enhance the impedance matching and isolation. Based on this, a printed wideband MIMO antenna system is proposed for portable 3G and 4G applications by means of multi-branch and the defect of ground technology, increasing the bandwidth and reducing mutual coupling between the antennas. The simulation results show that the return loss and isolation of the two antenna systems can meet the performance requirements of the antennas in the mobile phone.展开更多
A novel compact multiple-input-multiple-output (MIMO) antenna for portable ul-trawideband (UWB) applications is presented. This antenna consists of two modified planar-monopole antenna elements with coplanar waveguide...A novel compact multiple-input-multiple-output (MIMO) antenna for portable ul-trawideband (UWB) applications is presented. This antenna consists of two modified planar-monopole antenna elements with coplanar waveguides-fed printed on one side of the substrate. To enhance isolation and increase impedance bandwidth, a tree like stubs is placed on the ground plane at the 45°axis. The measured results show that the MIMO antenna operates from 2.3 GHz to 13 GHz, covering WLAN, WiMAX, and UWB. The low mutual coupling and low envelope correlation coefficient of less than 0.2 across the whole frequency band proved that this antenna was suitable for MIMO/diversity systems. Also, good performance of radiation patterns and the antenna’s compact size make it a good candidate for portable devices.展开更多
We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division mul...We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.展开更多
A structure was proposed for multiple-input-multiple-output multicarrier code divi- sion multiple access (MIMO MC-CDMA) uplink transmission system. Linear zero- forcing V-BLAST (ZF V-BLAST) algorithm and maximum r...A structure was proposed for multiple-input-multiple-output multicarrier code divi- sion multiple access (MIMO MC-CDMA) uplink transmission system. Linear zero- forcing V-BLAST (ZF V-BLAST) algorithm and maximum ratio combining (MRC) scheme was applied to the receivers. The average bit error rate (BER) expression was derived on condition that the number of receive antennas was larger than that of transmit antennas and it was verified by simulations. Numerical results show that the number of transmit and receive antennas, as well as the number of sub- carriers, all exert significant effects on the BER performance. The space diversity and frequency diversity show different abilities to improve the BER performance. The MIMO MC-CDMA system based on linear ZF V-BLAST algorithm is capable of achieving better BER performance than that of the conventional MC-CDMA system by reducing the number of transmit antennas or increasing the number of receive antennas.展开更多
The performance of multiuser multiple-input-multiple-output (MIMO) downlink systems with block diagonalization (BD) depends on the accuracy of the channel state information (CSI) available at the trans- mitter a...The performance of multiuser multiple-input-multiple-output (MIMO) downlink systems with block diagonalization (BD) depends on the accuracy of the channel state information (CSI) available at the trans- mitter and the receiver. In time-varying channels, the CSI available at the transmitter (CSIT) is always out-dated due to an inherent time delay between the uplink channel estimation and the downlink data transmission in time division duplexing (TDD) systems. This leads to a drastic degradation of system capacity. This paper first analyzes the effect of the outdated CSIT on multiuser MIMO downlink systems using the BD method and then proposes two linear processing methods, BD precoding with user selection and scheduling at the transmitter and total minimum mean squared error (MMSE) decoding at the receiver (TBDUSS-RTMMSE) and BD preceding at the transmitter with partial MMSE decoding at the receiver (TBD-RPMMSE), to mitigate the interference among data streams and users. Analysis and simulation results show that these methods can effectively reduce the impairment of the outdated CSIT to increase the system sum capacity in a suitable time delay region of the CSIT.展开更多
We consider a downlink multi-user scenario and investigate the use of reconfigurable intelligent surfaces(RISs)to maximize the dirty-paper-coding(DPC)sum rate of the RIS-assisted broadcast channel.Different from prior...We consider a downlink multi-user scenario and investigate the use of reconfigurable intelligent surfaces(RISs)to maximize the dirty-paper-coding(DPC)sum rate of the RIS-assisted broadcast channel.Different from prior works,which maximize the rate achievable by linear precoders,we assume a capacity-achieving DPC scheme is employed at the transmitter and optimize the transmit covariances and RIS reflection coefficients to directly maximize the sum capacity of the broadcast channel.We propose an optimization algorithm that iteratively alternates between optimizing the transmit covariances using convex optimization and the RIS reflection coefficients using Riemannian manifold optimization.Our results show that the proposed technique can be used to effectively improve the sum capacity in a variety of scenarios compared to benchmark schemes.展开更多
文摘Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
基金National Natural Science Foundation of China(No.62293493)。
文摘Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.
文摘MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective channels. Due to their recursive structure, these receivers may suffer from error propagation which results in an overall mean square error degradation. An MIMO-DFE based BLAST receiver with limited error propagation to combat frequencyselective channel is proposed, which employs both norm constraint on feedback filter taps and soft decision device. Simulation results show that the proposed receiver outperforms conventional ones in various frequency selective channels.
基金supported in part by the National Natural Science Foundation of China (60672047)the Shanghai Postdoctoral Scientific Program (05R214110).
文摘To mitigate the effects of the previous symbol decision errors of a decision-feedback (DF) equalizer on the current decision, a particle filter (PF) based DF equalizer for frequency selective multiple-input-multiple-output (MIMO) channel is proposed. On the basis of the analyses of DF equalization for the MIMO wireless system, it is found that a stochastic interference cancellation (IC) scheme can be employed to prevent the error propagation in a severe space-time interference scenario. This is because the random rather than the deterministic scheme can reduce the probability of an error decision even if an error decision occurs. Besides, the signal-to-interference-plus-noise ratio (SINR) based IC order, which is obtained via pilot, can guarantee the optimality of the cancellation. The bit error rate (BER) performance of the proposed scheme is verified through simulation experiments under different multipath interference environment.
基金Supported by National S&T Major Project of China(2013ZX03003002-003)
文摘For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information ( CSI ) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.
基金Supported by the High Technology Research and Development Programme of China (No. 003AA12331007) and the National Natural Science Foundation of China (No. 60332030, 60572157).
文摘In multiple-input-multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) system, a rate-embedded differential space-time-frequency (DSTF) coding scheme was proposed. Both the conventional space-time codes and coding techniques in frequency domain were employed to build high rate and low rate space-time-frequency message matrices. Then both types of message matrices were differentially transmitted alternately in the frequency domain. Consequently, the total transmission rate could be improved greatly. At receiver, a simple decision feedback differential detector (SDF-DD) was adopted to further enhance the total error performance with approximate DD complexity. Simulation results verified that the proposed scheme can implement high rate and high reliability differential transmission. Compared with the conventional DSTF coding schemes, the proposed scheme achieves higher spectral efficiency and much better error performance.
基金Supported by the National Natural Science Foundation of China (No.60772087,No.50803016,No.60975004,No.60902023)the Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (No.200341)+1 种基金the National 863 High-Tech R&D Program (No.2007AA01Z 228)the open research fund of Key Laboratory of Information Coding and Transmission,Southwest Jiaotong University
文摘Compared with channel estimation method based on explicit training sequences,bandwidth is saved for those methods using superimposed training sequences,while it is wasted when Cyclic Prefix(CP) is added.In previous work of McLernon,the Mean Square Error(MSE) performance of Data-Dependent Superimposed Training(DDST) without CP for Single-Input Single-Output(SISO) system was analyzed under the assumption that the data-dependent sequence matrix was a circulant matrix and not interfered by others.In fact,for the system without CP,the data-dependent sequence matrix is not circulant any more and will be interfered.This paper derives the exact expression of MSE for the system without CP and also gives its extension to Multiple-Input Multiple-Output(MIMO) system without CP.
文摘In this paper, an idea of using space-time block coding (STBC) in multi-user cooperative diversity has been exploited to improve the performance of the transmission in wireless local area networks. The theoretical and simulation results show that, using STBC approaches can always achieve the better performance than existing techniques without introducing the space-time coding. By analyzing the throughput and frame error ratio (FER) of the two different STBC cooperative schemes, we find the trade-off between throughput and reliability. The location of the relay is crucial to the performance, which supposes a rule for future cross-layer design.
文摘MIMO antenna systems can greatly improve the capacity and transmission rate of wireless communication. In this letter, two four-port multiple-input-multiple-output (MIMO) antenna systems are proposed in mobile devices. An algorithm of calculating envelope correlation (ρe) between antenna units is also proposed. By this algorithm the ρe of the PIFA-MIMO antenna system has been calculated. First, a PIFA-MIMO antenna system is designed for ISM (2.4 GHZ) application. The slots are etched on the ground and the antenna units are placed in such a way that the polarization diversity is exploited to enhance the impedance matching and isolation. Based on this, a printed wideband MIMO antenna system is proposed for portable 3G and 4G applications by means of multi-branch and the defect of ground technology, increasing the bandwidth and reducing mutual coupling between the antennas. The simulation results show that the return loss and isolation of the two antenna systems can meet the performance requirements of the antennas in the mobile phone.
文摘A novel compact multiple-input-multiple-output (MIMO) antenna for portable ul-trawideband (UWB) applications is presented. This antenna consists of two modified planar-monopole antenna elements with coplanar waveguides-fed printed on one side of the substrate. To enhance isolation and increase impedance bandwidth, a tree like stubs is placed on the ground plane at the 45°axis. The measured results show that the MIMO antenna operates from 2.3 GHz to 13 GHz, covering WLAN, WiMAX, and UWB. The low mutual coupling and low envelope correlation coefficient of less than 0.2 across the whole frequency band proved that this antenna was suitable for MIMO/diversity systems. Also, good performance of radiation patterns and the antenna’s compact size make it a good candidate for portable devices.
基金supported by the National Key R&D Program of China(No.2018YFB1800905)the National Natural Science Foundation of China(Nos.61935005,61720106015,61835002,and 62127802)。
文摘We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60572036 and 50534060)the National High Technology Project of China (Grant No. 2007AA01Z259)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (Grant No. W200703).
文摘A structure was proposed for multiple-input-multiple-output multicarrier code divi- sion multiple access (MIMO MC-CDMA) uplink transmission system. Linear zero- forcing V-BLAST (ZF V-BLAST) algorithm and maximum ratio combining (MRC) scheme was applied to the receivers. The average bit error rate (BER) expression was derived on condition that the number of receive antennas was larger than that of transmit antennas and it was verified by simulations. Numerical results show that the number of transmit and receive antennas, as well as the number of sub- carriers, all exert significant effects on the BER performance. The space diversity and frequency diversity show different abilities to improve the BER performance. The MIMO MC-CDMA system based on linear ZF V-BLAST algorithm is capable of achieving better BER performance than that of the conventional MC-CDMA system by reducing the number of transmit antennas or increasing the number of receive antennas.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2006AA01Z282)the Tsinghua-Qualcomm Project
文摘The performance of multiuser multiple-input-multiple-output (MIMO) downlink systems with block diagonalization (BD) depends on the accuracy of the channel state information (CSI) available at the trans- mitter and the receiver. In time-varying channels, the CSI available at the transmitter (CSIT) is always out-dated due to an inherent time delay between the uplink channel estimation and the downlink data transmission in time division duplexing (TDD) systems. This leads to a drastic degradation of system capacity. This paper first analyzes the effect of the outdated CSIT on multiuser MIMO downlink systems using the BD method and then proposes two linear processing methods, BD precoding with user selection and scheduling at the transmitter and total minimum mean squared error (MMSE) decoding at the receiver (TBDUSS-RTMMSE) and BD preceding at the transmitter with partial MMSE decoding at the receiver (TBD-RPMMSE), to mitigate the interference among data streams and users. Analysis and simulation results show that these methods can effectively reduce the impairment of the outdated CSIT to increase the system sum capacity in a suitable time delay region of the CSIT.
基金supported by the National Science Foundation(Nos.CNS-2107216 and CNS-2128368).
文摘We consider a downlink multi-user scenario and investigate the use of reconfigurable intelligent surfaces(RISs)to maximize the dirty-paper-coding(DPC)sum rate of the RIS-assisted broadcast channel.Different from prior works,which maximize the rate achievable by linear precoders,we assume a capacity-achieving DPC scheme is employed at the transmitter and optimize the transmit covariances and RIS reflection coefficients to directly maximize the sum capacity of the broadcast channel.We propose an optimization algorithm that iteratively alternates between optimizing the transmit covariances using convex optimization and the RIS reflection coefficients using Riemannian manifold optimization.Our results show that the proposed technique can be used to effectively improve the sum capacity in a variety of scenarios compared to benchmark schemes.