To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)...To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.展开更多
A series of Ni/AlMCM-41 catalysts with different nickel contents was prepared via the incipient wetness impregnation method. The effects of the nickel content on the structure, acidity and metal function of the cataly...A series of Ni/AlMCM-41 catalysts with different nickel contents was prepared via the incipient wetness impregnation method. The effects of the nickel content on the structure, acidity and metal function of the catalysts were studied by using different techniques. In the test of n-dodecane hydroconversion, it was found that the metal and acid functions were well balanced over a 2.0%Ni(mass fraction)/AlMCM-41 catalyst, which gave the maximal isomerization selectivity and a homolytic cleavage products.展开更多
ITQ-2 zeolites were prepared by sequential alkali-swelling and ultrasonic-delamination of precursor MCM-22 and characterized by X-ray powder diffraction, scanning electron microscopy, nitrogen adsorption-desorption, a...ITQ-2 zeolites were prepared by sequential alkali-swelling and ultrasonic-delamination of precursor MCM-22 and characterized by X-ray powder diffraction, scanning electron microscopy, nitrogen adsorption-desorption, ammonia temperature-programmed desorption and in-situ Fourier-transform infrared spectroscopy. The delamination induced a change in the morphology of ITQ-2 zeolites from aggregated thin platelets to scattered platelets, together with a significant increase in external specific surface area, which reached a plateau at the ultrasonic treatment time of 3 h. The catalytic cracking of n-dodecane over ITQ-2 zeolites was evaluated with ITQ-2 coated on the inside wall of a tubular reactor at 550 ℃ and 4 MPa. The sample obtained by ultrasonic treatment of 3 h (ITQ-2-3) gave the highest initial conversion of n-dodecane, whereas those of 5 h and I h gave the conversion even lower than MCM-22, which was in agreement with the trend of the ratio of strong Lewis acid to the total acid amount. Although the amount of cokes deposited on ITQ-2-3 was larger than that on MCM-22, the former deactivated slowly, suggesting that a large external specific surface area benefits the stability of zeolite coatings,展开更多
Cold chain transportation is currently a hot research topic.Since the traditional refrigeration methods lead to the consumption of large amounts of energy,the search for new energy storage materials is a major trend.I...Cold chain transportation is currently a hot research topic.Since the traditional refrigeration methods lead to the consumption of large amounts of energy,the search for new energy storage materials is a major trend.In the present contribution,n-dodecane/PMMA microencapsulated phase change materials were prepared by suspension polymerization for ice-temperature cold chain transportation and their preparation parameters were explored using the encapsulation ratio as optimization indicator.The results show that the n-dodecane-containing microcapsules have a maximum encapsulation ratio of 93.2%when using a core-to-wall ratio of 3:1,5%of emulsifier,30%of crosslinker,and 2000 rpm of emulsification speed.The phase transition temperature and enthalpy are-2℃and 195.9 kJ/kg,respectively.The microcapsules prepared with the optimized process parameters have good microscopic morphology,high energy storage efficiency,uniform particle size and good thermal stability,making them ideal materials for cold chain transportation.展开更多
A facile and controllable one-step method to treat liquid hydrocarbons and synthesize vertical graphene nanowalls has been developed by using the technique of inductively-coupled plasma-enhanced chemical vapor deposit...A facile and controllable one-step method to treat liquid hydrocarbons and synthesize vertical graphene nanowalls has been developed by using the technique of inductively-coupled plasma-enhanced chemical vapor deposition for plasma cracking of n-dodecane.Herein,the morphology and microstructure of solid carbon material and graphene nanowalls are characterized in terms of different operating conditions,i.e.input power,H2/Ar ratio,injection rate and reaction temperature.The results reveal that the optimal operating conditions were 500 W,5:10,30μl min^-1 and 800℃ for the input power,H2/Ar ratio,injection rate and reaction temperature,respectively.In addition,the degree of graphitization and the gaseous product are analyzed by Raman spectroscopy and gas chromatography detection.It can be calculated from the Raman spectrum that the relative intensity of ID/IG is approximately 1.55,and I2D/IG is approximately 0.48,indicating that the graphene prepared from n-dodecane has a rich defect structure and a high degree of graphitization.By calculating the mass loading and detecting the outlet gas,we find that the cracking rate of n-dodecane is only 6%-7%and that the gaseous products below C2 mainly include CH4,C2H2,C2H4,C2H6 and H2.Among them,the proportion of hydrogen in the outlet gas of n-dodecane cracking ranges from 1.3%-15.1%under different hydrogen flows.Based on our research,we propose a brand new perspective for both liquid hydrocarbon treatment and other value-added product syntheses.展开更多
Densities of methyl nonanoate,n-dodecane,and their binary mixtures were investigated to provide the necessary data for their engineering applications as promising fuels and fuel additives.In the present work,densities...Densities of methyl nonanoate,n-dodecane,and their binary mixtures were investigated to provide the necessary data for their engineering applications as promising fuels and fuel additives.In the present work,densities were measured under atmospheric pressure at 293.15—463.15 K.The density data for the binary mixtures were fitted into a forai of excess molar volume.The excess molar volumes were mostly positive,and the maximum value was obtained at molar fractions of n-dodecane between 0.5 and 0.6.Molecular simulations of specified systems were carried out by using four kinds of force fields,and the suitable force fields for describing the volume properties of the system were AMBER96 and OPLS-AA.The relative deviations for these two force fields between the simulated and the experimental data were well within±4%,which meets the general engineering requirement.展开更多
Several 2.0 wt% nickel catalysts supported on nanometer bimodal mesoporous aluminosilicate (NBMAS), AlHMS and AlMCM-41 were prepared by means of the wetness impregnation method. The characterization tech-niques such a...Several 2.0 wt% nickel catalysts supported on nanometer bimodal mesoporous aluminosilicate (NBMAS), AlHMS and AlMCM-41 were prepared by means of the wetness impregnation method. The characterization tech-niques such as Py-FTIR and H2 chemisorption showed that the amount of Br鰊sted acid sites decreased in the order of Ni/AlHMS>Ni/AlMCM-41>Ni/NBMAS, while the nickel dispersion differed a little. In the catalytic n-dodecane hydroconversion, the highest conversion was obtained over Ni/NBMAS, and the lowest isomerization selectivity occurred over Ni/AlHMS. For the cracked products, the symmetrical carbon number distribution cen-tered at C6 was obtained on the Ni/AlMCM-41 catalyst due to the well balanced metal/acid functions, whereas the Ni/AlHMS and Ni/NBMAS catalysts led to more C3-C5 and C1+C11 products, respectively.展开更多
Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on Ce...Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.展开更多
Hydroisomerization catalysts Pt/ZSM-22, Pt/ZSM-23, and Pt/ZSM-22/ZSM-23 were prepared by supporting Pt on ZSM-22, ZSM-23, and intergrowth zeolite ZSM-22/ZSM-23, respectively. The typical physicochemical properties of ...Hydroisomerization catalysts Pt/ZSM-22, Pt/ZSM-23, and Pt/ZSM-22/ZSM-23 were prepared by supporting Pt on ZSM-22, ZSM-23, and intergrowth zeolite ZSM-22/ZSM-23, respectively. The typical physicochemical properties of these catalysts were characterized by X-Ray Diffraction (XRD), N2 absorption-desorption, Pyridine-Fourier Transform Infrared (Py-FTIR), Transmission Electron Microscopy (TEM), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM) and NH3- Temperature Programmed Desorption (NH3-TPD), and the performance of these catalysts in n-dodecane hydroisomerization was evaluated in a continuous down-flow fixed bed with a stainless steel tubular reactor. The characterization results indicated that the intergrowth zeolite ZSM-22/ZSM-23 possessed the dual structure of ZSM-22 and ZSM-23, and the catalyst Pt/ZSM-22/ZSM-23 had similar pores and weak acidity to Pt/ZSM-22 and Pt/ZSM-23 catalysts. Moreover, Pt/ZSM-22/ZSM-23 catalyst showed a high selectivity in hydroisomerization of long chain n-alkanes to mono-branched isomers. The evaluation results for n-dodecane hydroisomerization indicated that the activity of Pt/ZSM-22/ZSM-23 was the lowest, while the hydroisomerization selectivity was the highest among the three catalysts. The maximum yield of i-dodecane product was 68.3% over Pt/ZSM-22/ZSM-23 at 320 ℃.展开更多
The in-liquid plasma method is a technology in which plasma of several thousand degrees Kelvin is generated within bubbles in a liquid. The purpose of this study is to enhance the hydrogen production rate from waste o...The in-liquid plasma method is a technology in which plasma of several thousand degrees Kelvin is generated within bubbles in a liquid. The purpose of this study is to enhance the hydrogen production rate from waste oils by using in-liquid plasma. Two types of microwave in-liquid plasma apparatus are adopted for hydrogen production. One is a conventional MW (microwave) oven, the other is a microwave generator with a waveguide to apply the in-liquid plasma steam reforming method in n-dodecane. The produced gas is 58%-90% hydrogen in these methods. The hydrogen production rate is improved by stabilization of the bubble growth. The gas production rate by plasma feeding steam in n-dodecane is 1.4 times higher than that without feeding steam.展开更多
基金supported by the National Key Research and Development Program of China(2019YFE0117200)the Natural Science Foundation of China(41977304)
文摘To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.
基金the Funds for the National Key Fundamental Research and Developm ent Projects of China (No.G19990 2 2 4 0 2 )
文摘A series of Ni/AlMCM-41 catalysts with different nickel contents was prepared via the incipient wetness impregnation method. The effects of the nickel content on the structure, acidity and metal function of the catalysts were studied by using different techniques. In the test of n-dodecane hydroconversion, it was found that the metal and acid functions were well balanced over a 2.0%Ni(mass fraction)/AlMCM-41 catalyst, which gave the maximal isomerization selectivity and a homolytic cleavage products.
文摘ITQ-2 zeolites were prepared by sequential alkali-swelling and ultrasonic-delamination of precursor MCM-22 and characterized by X-ray powder diffraction, scanning electron microscopy, nitrogen adsorption-desorption, ammonia temperature-programmed desorption and in-situ Fourier-transform infrared spectroscopy. The delamination induced a change in the morphology of ITQ-2 zeolites from aggregated thin platelets to scattered platelets, together with a significant increase in external specific surface area, which reached a plateau at the ultrasonic treatment time of 3 h. The catalytic cracking of n-dodecane over ITQ-2 zeolites was evaluated with ITQ-2 coated on the inside wall of a tubular reactor at 550 ℃ and 4 MPa. The sample obtained by ultrasonic treatment of 3 h (ITQ-2-3) gave the highest initial conversion of n-dodecane, whereas those of 5 h and I h gave the conversion even lower than MCM-22, which was in agreement with the trend of the ratio of strong Lewis acid to the total acid amount. Although the amount of cokes deposited on ITQ-2-3 was larger than that on MCM-22, the former deactivated slowly, suggesting that a large external specific surface area benefits the stability of zeolite coatings,
基金supported by the National Key Research and Development Program of china(No.2018YFD1101005)and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Cold chain transportation is currently a hot research topic.Since the traditional refrigeration methods lead to the consumption of large amounts of energy,the search for new energy storage materials is a major trend.In the present contribution,n-dodecane/PMMA microencapsulated phase change materials were prepared by suspension polymerization for ice-temperature cold chain transportation and their preparation parameters were explored using the encapsulation ratio as optimization indicator.The results show that the n-dodecane-containing microcapsules have a maximum encapsulation ratio of 93.2%when using a core-to-wall ratio of 3:1,5%of emulsifier,30%of crosslinker,and 2000 rpm of emulsification speed.The phase transition temperature and enthalpy are-2℃and 195.9 kJ/kg,respectively.The microcapsules prepared with the optimized process parameters have good microscopic morphology,high energy storage efficiency,uniform particle size and good thermal stability,making them ideal materials for cold chain transportation.
文摘A facile and controllable one-step method to treat liquid hydrocarbons and synthesize vertical graphene nanowalls has been developed by using the technique of inductively-coupled plasma-enhanced chemical vapor deposition for plasma cracking of n-dodecane.Herein,the morphology and microstructure of solid carbon material and graphene nanowalls are characterized in terms of different operating conditions,i.e.input power,H2/Ar ratio,injection rate and reaction temperature.The results reveal that the optimal operating conditions were 500 W,5:10,30μl min^-1 and 800℃ for the input power,H2/Ar ratio,injection rate and reaction temperature,respectively.In addition,the degree of graphitization and the gaseous product are analyzed by Raman spectroscopy and gas chromatography detection.It can be calculated from the Raman spectrum that the relative intensity of ID/IG is approximately 1.55,and I2D/IG is approximately 0.48,indicating that the graphene prepared from n-dodecane has a rich defect structure and a high degree of graphitization.By calculating the mass loading and detecting the outlet gas,we find that the cracking rate of n-dodecane is only 6%-7%and that the gaseous products below C2 mainly include CH4,C2H2,C2H4,C2H6 and H2.Among them,the proportion of hydrogen in the outlet gas of n-dodecane cracking ranges from 1.3%-15.1%under different hydrogen flows.Based on our research,we propose a brand new perspective for both liquid hydrocarbon treatment and other value-added product syntheses.
基金the National Natural Science Foundation of China(No.51506140).
文摘Densities of methyl nonanoate,n-dodecane,and their binary mixtures were investigated to provide the necessary data for their engineering applications as promising fuels and fuel additives.In the present work,densities were measured under atmospheric pressure at 293.15—463.15 K.The density data for the binary mixtures were fitted into a forai of excess molar volume.The excess molar volumes were mostly positive,and the maximum value was obtained at molar fractions of n-dodecane between 0.5 and 0.6.Molecular simulations of specified systems were carried out by using four kinds of force fields,and the suitable force fields for describing the volume properties of the system were AMBER96 and OPLS-AA.The relative deviations for these two force fields between the simulated and the experimental data were well within±4%,which meets the general engineering requirement.
基金Project supported by the National Key Fundamental Research and Development Projects of China (No. G1999022402).
文摘Several 2.0 wt% nickel catalysts supported on nanometer bimodal mesoporous aluminosilicate (NBMAS), AlHMS and AlMCM-41 were prepared by means of the wetness impregnation method. The characterization tech-niques such as Py-FTIR and H2 chemisorption showed that the amount of Br鰊sted acid sites decreased in the order of Ni/AlHMS>Ni/AlMCM-41>Ni/NBMAS, while the nickel dispersion differed a little. In the catalytic n-dodecane hydroconversion, the highest conversion was obtained over Ni/NBMAS, and the lowest isomerization selectivity occurred over Ni/AlHMS. For the cracked products, the symmetrical carbon number distribution cen-tered at C6 was obtained on the Ni/AlMCM-41 catalyst due to the well balanced metal/acid functions, whereas the Ni/AlHMS and Ni/NBMAS catalysts led to more C3-C5 and C1+C11 products, respectively.
基金supported by the Key Research and Design Program of Qinhuangdao(202101A005)the Science and Technology Project of Hebei Education Department(QN2023094)+2 种基金the Cultivation Project for Basic Research and Innovation of Yanshan University(2021LGQN028)the Project for Research and Development of Metal Catalysts for Photo-thermal Decomposition of Waste Plastics to Prepare Value-added Chemicals(x2023322)the Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(22567616H).
文摘Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.
基金the financial supports form Petrochina(050508-04-02)the National Natural Science Foundation of China(No.21073235,and 20833011)
文摘Hydroisomerization catalysts Pt/ZSM-22, Pt/ZSM-23, and Pt/ZSM-22/ZSM-23 were prepared by supporting Pt on ZSM-22, ZSM-23, and intergrowth zeolite ZSM-22/ZSM-23, respectively. The typical physicochemical properties of these catalysts were characterized by X-Ray Diffraction (XRD), N2 absorption-desorption, Pyridine-Fourier Transform Infrared (Py-FTIR), Transmission Electron Microscopy (TEM), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM) and NH3- Temperature Programmed Desorption (NH3-TPD), and the performance of these catalysts in n-dodecane hydroisomerization was evaluated in a continuous down-flow fixed bed with a stainless steel tubular reactor. The characterization results indicated that the intergrowth zeolite ZSM-22/ZSM-23 possessed the dual structure of ZSM-22 and ZSM-23, and the catalyst Pt/ZSM-22/ZSM-23 had similar pores and weak acidity to Pt/ZSM-22 and Pt/ZSM-23 catalysts. Moreover, Pt/ZSM-22/ZSM-23 catalyst showed a high selectivity in hydroisomerization of long chain n-alkanes to mono-branched isomers. The evaluation results for n-dodecane hydroisomerization indicated that the activity of Pt/ZSM-22/ZSM-23 was the lowest, while the hydroisomerization selectivity was the highest among the three catalysts. The maximum yield of i-dodecane product was 68.3% over Pt/ZSM-22/ZSM-23 at 320 ℃.
文摘The in-liquid plasma method is a technology in which plasma of several thousand degrees Kelvin is generated within bubbles in a liquid. The purpose of this study is to enhance the hydrogen production rate from waste oils by using in-liquid plasma. Two types of microwave in-liquid plasma apparatus are adopted for hydrogen production. One is a conventional MW (microwave) oven, the other is a microwave generator with a waveguide to apply the in-liquid plasma steam reforming method in n-dodecane. The produced gas is 58%-90% hydrogen in these methods. The hydrogen production rate is improved by stabilization of the bubble growth. The gas production rate by plasma feeding steam in n-dodecane is 1.4 times higher than that without feeding steam.