The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied.Attributed to the generation of micro-structured magnetic fields,most fast electron beams are proven to be effectively g...The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied.Attributed to the generation of micro-structured magnetic fields,most fast electron beams are proven to be effectively guided and restricted during the propagation.Different transport patterns of fast electrons in the targets are observed in experiments and reproduced by particle-in-cell simulations,representing two components:initially collimated low-energy electrons in the center and high-energy scattering electrons turning into surrounding annular beams.The critical energy for confined electrons is deduced theoretically.The electron guidance and confinement by the nano-structured targets offer a technological approach to manipulate and optimize the fast electron transport by properly modulating pulse parameters and target design,showing great potential in many applications including ion acceleration,microfocus x-ray sources and inertial confinement fusion.展开更多
Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality ...Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality at low cost.In this study,a method combining metal-assisted chemical etching and machine learning is proposed to fabricate sub-10 nm nanopore arrays on silicon wafers with various dopant types and concentrations.Through a SVM algorithm,the relationship between the nanopore structures and the fabrication conditions,including the etching solution,etching time,dopant type,and concentration,was modeled and experimentally verified.Based on this,a processing parameter window for generating regular nanopore arrays on silicon wafers with variable doping types and concentrations was obtained.The proposed machine-learning-assisted etching method will provide a feasible and economical way to process high-quality silicon nanopores,nanostructures,and devices.展开更多
Intracellular electrophysiological research is vital for biological and medical research.Traditional planar microelectrode arrays(MEAs)have disadvantages in recording intracellular action potentials due to the loose c...Intracellular electrophysiological research is vital for biological and medical research.Traditional planar microelectrode arrays(MEAs)have disadvantages in recording intracellular action potentials due to the loose cell-electrode interface.To investigate intracellular electrophysiological signals with high sensitivity,electroporation was used to obtain intracellular recordings.In this study,a biosensing system based on a nanoporous electrode array(NPEA)integrating electrical perforation and signal acquisition was established to dynamically and sensitively record the intracellular potential of cardiomyocytes over a long period of time.Moreover,nanoporous electrodes can induce the protrusion of cell membranes and enhance cell-electrode interfacial coupling,thereby facilitating effective electroporation.Electrophysiological signals over the entire recording process can be quantitatively and segmentally analyzed according to the signal changes,which can equivalently reflect the dynamic evolution of the electroporated cardiomyocyte membrane.We believe that the low-cost and high-performance nanoporous biosensing platform suggested in this study can dynamically record intracellular action potential,evaluate cardiomyocyte electroporation,and provide a new strategy for investigating cardiology pharmacological science.展开更多
Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found ...Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of -10 μm. The film resistivity of ZnO/SiNPA is measured to be -8.9Ωcm by the standard four probe method. The lengthwise Ⅰ-Ⅴ curve of ZnO/Si-NPA heterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages.展开更多
A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of Ga...A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of GaN/Si- NPA is measured and the PL mechanism is analyzed. It is found that the PL spectrum is basically composed of two narrow ultraviolet peaks and a broad blue peak, corresponding to the near band-edge emission of GaN and its phonon replicas, and the emission from Si-NPA. No GaN defect-related PL is observed in the as-prepared GaN/Si-NPA. Our experiments prove that Si-NPA might be an ideal substrate for preparing high-quality Si-based GaN nanomaterials or nanodeviees.展开更多
A silicon nanoporous pillar array (Si-NPA) is thought to be a promising functional substrate for constructing a variety of Si-based optoelectronic nanodevices, due to its unique hierarchical structure and enhanced p...A silicon nanoporous pillar array (Si-NPA) is thought to be a promising functional substrate for constructing a variety of Si-based optoelectronic nanodevices, due to its unique hierarchical structure and enhanced physical properties. This makes the in-depth understanding of the photoluminescence (PL) of Si-NPA crucial for both scientific research and practical applications. In this work, the PL properties of Si-NPA are studied by measuring both the steady-state and time-resolved PL spectrum. Based on the experimental data, the three PL bands of Si-NPA, i.e., the ultraviolet band, the purple-blue plateau and the red band are assigned to the oxygen-excess defects in Si oxide or silanol groups at the surface of Si nanocrystallites (nc-Si), oxygen deficiency defects in Si oxide, and band-to-band transition of nc-Si under the frame of quantum confinement combining with the surface states like Si=O and Si-O^i bonds at the surface of nc-Si, respectively. These results may provide some novel insight into the PL process of Si-NPA and may be helpful for clarifying the PL mechanism.展开更多
基金supported by the National Key R&D Program of China(Grant No.2016YFA0401100)the Science and Technology on Plasma Physics Laboratory(Grant Nos.6142A04180201 and JCKYS2020212006)+1 种基金National Natural Science Foundation of China(Grant No.11975214)the Science Challenge Program(Grant Nos.TZ2016005 and TZ2018005)
文摘The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied.Attributed to the generation of micro-structured magnetic fields,most fast electron beams are proven to be effectively guided and restricted during the propagation.Different transport patterns of fast electrons in the targets are observed in experiments and reproduced by particle-in-cell simulations,representing two components:initially collimated low-energy electrons in the center and high-energy scattering electrons turning into surrounding annular beams.The critical energy for confined electrons is deduced theoretically.The electron guidance and confinement by the nano-structured targets offer a technological approach to manipulate and optimize the fast electron transport by properly modulating pulse parameters and target design,showing great potential in many applications including ion acceleration,microfocus x-ray sources and inertial confinement fusion.
基金supported by the National Natural Science Foundation of China[Grant Nos.51975127,U20A6004]the Guangdong-Hong Kong Technology Coopeartion[Grant No.GHP/112/19GD]from Hong Kong Innovation and Technology Commission+1 种基金Research and Development Program of Guangdong Province[Grant No.2020A0505140008]the Fund of Key-Area Research and Development Program of Guangdong Province[Grant No.2018B090906002]。
文摘Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality at low cost.In this study,a method combining metal-assisted chemical etching and machine learning is proposed to fabricate sub-10 nm nanopore arrays on silicon wafers with various dopant types and concentrations.Through a SVM algorithm,the relationship between the nanopore structures and the fabrication conditions,including the etching solution,etching time,dopant type,and concentration,was modeled and experimentally verified.Based on this,a processing parameter window for generating regular nanopore arrays on silicon wafers with variable doping types and concentrations was obtained.The proposed machine-learning-assisted etching method will provide a feasible and economical way to process high-quality silicon nanopores,nanostructures,and devices.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ23E010004)the National Key Research and Development Program of China(No.2021YFB3200801)。
文摘Intracellular electrophysiological research is vital for biological and medical research.Traditional planar microelectrode arrays(MEAs)have disadvantages in recording intracellular action potentials due to the loose cell-electrode interface.To investigate intracellular electrophysiological signals with high sensitivity,electroporation was used to obtain intracellular recordings.In this study,a biosensing system based on a nanoporous electrode array(NPEA)integrating electrical perforation and signal acquisition was established to dynamically and sensitively record the intracellular potential of cardiomyocytes over a long period of time.Moreover,nanoporous electrodes can induce the protrusion of cell membranes and enhance cell-electrode interfacial coupling,thereby facilitating effective electroporation.Electrophysiological signals over the entire recording process can be quantitatively and segmentally analyzed according to the signal changes,which can equivalently reflect the dynamic evolution of the electroporated cardiomyocyte membrane.We believe that the low-cost and high-performance nanoporous biosensing platform suggested in this study can dynamically record intracellular action potential,evaluate cardiomyocyte electroporation,and provide a new strategy for investigating cardiology pharmacological science.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574112).
文摘Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of -10 μm. The film resistivity of ZnO/SiNPA is measured to be -8.9Ωcm by the standard four probe method. The lengthwise Ⅰ-Ⅴ curve of ZnO/Si-NPA heterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages.
文摘A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of GaN/Si- NPA is measured and the PL mechanism is analyzed. It is found that the PL spectrum is basically composed of two narrow ultraviolet peaks and a broad blue peak, corresponding to the near band-edge emission of GaN and its phonon replicas, and the emission from Si-NPA. No GaN defect-related PL is observed in the as-prepared GaN/Si-NPA. Our experiments prove that Si-NPA might be an ideal substrate for preparing high-quality Si-based GaN nanomaterials or nanodeviees.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61176044 and 11074224
文摘A silicon nanoporous pillar array (Si-NPA) is thought to be a promising functional substrate for constructing a variety of Si-based optoelectronic nanodevices, due to its unique hierarchical structure and enhanced physical properties. This makes the in-depth understanding of the photoluminescence (PL) of Si-NPA crucial for both scientific research and practical applications. In this work, the PL properties of Si-NPA are studied by measuring both the steady-state and time-resolved PL spectrum. Based on the experimental data, the three PL bands of Si-NPA, i.e., the ultraviolet band, the purple-blue plateau and the red band are assigned to the oxygen-excess defects in Si oxide or silanol groups at the surface of Si nanocrystallites (nc-Si), oxygen deficiency defects in Si oxide, and band-to-band transition of nc-Si under the frame of quantum confinement combining with the surface states like Si=O and Si-O^i bonds at the surface of nc-Si, respectively. These results may provide some novel insight into the PL process of Si-NPA and may be helpful for clarifying the PL mechanism.