期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
Integrating theory with the nanoreactor concept to synthesize hollow carbon sphere-encapsulated PtNi alloys for enhanced H_(2) generation
1
作者 Yufeng Wu Minwei Song +3 位作者 Ziyi Zhao Guang-Hui Wang Changlong Wang Didier Astruc 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期150-162,共13页
The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we re... The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we report the rational design of nanoreactors comprising hollow carbon sphere-confined PtNi bimetallic NPs(PtNi@HCS)as highly efficient catalysts for hydrogen generation via ammonia borane hydrolysis in water.Using both density functional theory calculations and molecular dynamics simulations,the effects of an active PtNi combination and the critical synergistic role of a hollow carbon shell on the molecule diffusion adsorption behaviors are explored.Kinetic isotope effects and theoretical calculations allow the clarification of the mechanism,with oxidative addition of an O-H bond of water to the catalyst surface being the rate-determining step.The remarkable catalytic activity of the PtNi@HCS nanoreactor was also utilized for successful tandem catalytic hydrogenation reactions,using in situ-generated H_(2) from ammonia borane with high efficiency.The concerted design,theoretical calculations,and experimental work presented here shed light on the rational elaboration of efficient nanocatalysts and contribute to the establishment of a circular carbon economy using green hydrogen. 展开更多
关键词 ammonia borane hydrogen NANOALLOY nanoreactor solid catalyst
下载PDF
Construction of a Cu@hollow TS-1 nanoreactor based on a hierarchical full-spectrum solar light utilization strategy for photothermal synergistic artificial photosynthesis
2
作者 Sixian Zhu Qiao Zhao +5 位作者 Hongxia Guo Li Liu Xiao Wang Xiwei Qi Xianguang Meng Wenquan Cui 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期25-36,共12页
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn... The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis. 展开更多
关键词 artificial photosynthesis full spectrum nanoreactorS photothermal catalysis
下载PDF
NIR-triggered on-site NO/ROS/RNS nanoreactor:Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
3
作者 Ziqing Xu Yakun Kang +9 位作者 Jie Zhang Jiajia Tang Hanyao Sun Yang Li Doudou He Xuan Sha Yuxia Tang Ziyi Fu Feiyun Wu Shouju Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第6期58-73,共16页
Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune ... Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune activation.Addressing these challenges,we present a novel near-infrared(NIR)-triggered RNS nanoreactor(PBNO-Ce6)to amplify the photodynamic and photothermal therapy efficacy against triple-negative breast cancer(TNBC).The designed PBNOCe6 combines sodium nitroprusside-doped Prussian Blue nanoparticles with Chlorin e6 to enable on-site RNS production through NIR-induced concurrent NO release and ROS generation.This not only enhances tumor cell eradication but also potentiates local and systemic antitumor immune responses,protecting mice from tumor rechallenge.Our in vivo evaluations revealed that treatment with PBNO-Ce6 leads to a remarkable 2.7-fold increase in cytotoxic T lymphocytes and a 62%decrease in regulatory T cells in comparison to the control PB-Ce6(Prussian Blue nanoparticles loaded with Chlorin e6),marking a substantial improvement over traditional PTT/PDT.As such,the PBNO-Ce6 nanoreactor represents a transformative approach for improving outcomes in TNBC and potentially other malignancies affected by similar barriers. 展开更多
关键词 photothermal therapy photodynamic therapy nitric oxide reactive nitrogen species triple-negative breast cancer immune response nanoreactor
下载PDF
Accelerating H^(*)desorption of hollow Mo_(2)C nanoreactor via in-situ grown carbon dots for electrocatalytic hydrogen evolution
4
作者 Mengmeng Liu Yuanyuan Jiang +3 位作者 Zhuwei Cao Lulu Liu Hong Chen Sheng Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期464-471,共8页
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv... Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds. 展开更多
关键词 Mo_(2)C nanoreactor Carbon dots H^(*)desorption Electrocatalytic hydrogen evolution
下载PDF
Boosting ferroptosis and microtubule inhibition for antitumor therapy via a carrier-free supermolecule nanoreactor 被引量:2
5
作者 Min Mu Xiaoyan Liang +8 位作者 Na Zhao Di Chuan Bo Chen Shasha Zhao Guoqing Wang Rangrang Fan Bingwen Zou Bo Han Gang Guo 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第1期99-109,共11页
Traditional microtubule inhibitors fail to significantly enhance+e effect of colorectal cancer;hence,new and efficient strategies are necessary.In+is study,a supramolecular nanoreactor(DOC@TA-Fe^(3+))based on tannic a... Traditional microtubule inhibitors fail to significantly enhance+e effect of colorectal cancer;hence,new and efficient strategies are necessary.In+is study,a supramolecular nanoreactor(DOC@TA-Fe^(3+))based on tannic acid(TA),iron ion(Fe^(3+)),and docetaxel(DOC)wi+microtubule inhibition,reactive oxygen species(ROS)generation,and gluta+ione peroxidase 4(GPX4)inhibition,is prepared for ferroptosis/apoptosis treatment.After internalization by CT26 cells,+e DOC@TA-Fe^(3+)nanoreactor escapes from+e lysosomes to release payloads.+e subsequent Fe^(3+)/Fe^(2+)conversion mediated by TA reducibility can trigger+e Fenton reaction to enhance+e ROS concentration.Additionally,Fe^(3+)can consume gluta+ione to repress+e activity of GPX4 to induce ferroptosis.Meanwhile,+e released DOC controls microtubule dynamics to activate+e apoptosis pa+way.+e superior in vivo antitumor efficacy of DOC@TA-Fe^(3+)nanoreactor in terms of tumor grow+inhibition and improved survival is verified in CT26 tumor-bearing mouse model.+erefore,+e nanoreactor can act as an effective apoptosis and ferroptosis inducer for application in colorectal cancer+erapy. 展开更多
关键词 Carrier-free nanoreactor Ferroptosis MICROTUBULE Colorectal cancer
下载PDF
A MXene-Based Bionic Cascaded-Enzyme Nanoreactor for Tumor Phototherapy/Enzyme Dynamic Therapy and Hypoxia-Activated Chemotherapy 被引量:2
6
作者 Xiaoge Zhang Lili Cheng +5 位作者 Yao Lu Junjie Tang Qijun Lv Xiaomei Chen You Chen Jie Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期24-44,共21页
The enzyme-mediated elevation of reactive oxygen species(ROS)at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment.Herein,we proposed a camouflaged bioni... The enzyme-mediated elevation of reactive oxygen species(ROS)at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment.Herein,we proposed a camouflaged bionic cascaded-enzyme nanoreactor based on Ti_(3)C_(2)nanosheets for combined tumor enzyme dynamic therapy(EDT),phototherapy and deoxygenation-activated chemotherapy.Briefly,glucose oxidase(GOX)and chloroperoxidase(CPO)were chemically conjugated onto Ti_(3)C_(2)nanosheets,where the deoxygenation-activated drug tirapazamine(TPZ)was also loaded,and the Ti_(3)C_(2)-GOX-CPO/TPZ(TGCT)was embedded into nanosized cancer cell-derived membrane vesicles with high-expressed CD47(m_eTGCT).Due to biomimetic membrane camouflage and CD47 overexpression,m_eTGCT exhibited superior immune escape and homologous targeting capacities,which could effectively enhance the tumor preferential targeting and internalization.Once internalized into tumor cells,the cascade reaction of GOX and CPO could generate HClO for efficient EDT.Simultaneously,additional laser irradiation could accelerate the enzymic-catalytic reaction rate and increase the generation of singlet oxygen(~1O_(2)).Furthermore,local hypoxia environment with the oxygen depletion by EDT would activate deoxygenation-sensitive prodrug for additional chemotherapy.Consequently,m_eTGCT exhibits amplified synergistic therapeutic effects of tumor phototherapy,EDT and chemotherapy for efficient tumor inhibition.This intelligent cascaded-enzyme nanoreactor provides a promising approach to achieve concurrent and significant antitumor therapy. 展开更多
关键词 Cascaded-enzyme nanoreactor Deoxygenation-sensitive prodrugs Tumor enzyme dynamic therapy Phototherapy CD47
下载PDF
Advanced yolk-shell nanoparticles as nanoreactors for energy conversion 被引量:3
7
作者 Meiwen Wang Yash Boyjoo +2 位作者 Jian Pan Shaobin Wang Jian Liu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第6期970-990,共21页
Yolk‐shell structured nanoparticles are of immense scientific and technological interests because of their unique architecture and myriad of applications.This review summarizes recent progresses in the use of yolk‐s... Yolk‐shell structured nanoparticles are of immense scientific and technological interests because of their unique architecture and myriad of applications.This review summarizes recent progresses in the use of yolk‐shell structured nanoparticles as nanoreactors for various chemical reactions.A very brief overview of synthetic strategies is provided with emphasis on recent research progress in the last five years.Catalytic applications of these yolk‐shell structured nanoreactors are then discussed by covering photocatalysis,methane reforming and electrochemical conversion.The state of the art research and perspective in future development are also highlighted. 展开更多
关键词 Yolk‐shell nanoreactors Energy conversion applications PHOTOCATALYSIS Fuel cell Utilization of carbon sources
下载PDF
Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation
8
作者 Shilin Mei Zdravko Kochovski +6 位作者 Rafael Roa Sasa Gu Xiaohui Xu Hongtao Yu Joachim Dzubiella Matthias Ballauff Yan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期469-484,共16页
Photothermal conversion(PTC)nanostructures have great potential for applications in many fields,and therefore,they have attracted tremendous attention.However,the construction of a PTC nanoreactor with multi-compartme... Photothermal conversion(PTC)nanostructures have great potential for applications in many fields,and therefore,they have attracted tremendous attention.However,the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties.Herein,we designed and synthesized a catalytically active,PTC gold(Au)@polydopamine(PDA)nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template.The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique.They feature permeable shells with tunable shell thickness.Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems.Notably,a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated,which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction.The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies. 展开更多
关键词 Gold@polydopamine 3D tomography nanoreactor Catalysis PHOTOTHERMAL conversion
下载PDF
A confined growth strategy to construct 3DOM SiO_(2) nanoreactor insitu embedded Co_(3)O_(4) nanoparticles catalyst for the catalytic combustion of VOCs:Superior H_(2)O and SO_(2) resistance 被引量:1
9
作者 Weigao Han Shilin Wu +4 位作者 Fang Dong Weiliang Han Yinghao Chu Linghui Su Zhicheng Tang 《Nano Research》 SCIE EI CSCD 2024年第1期207-220,共14页
SO_(2)poisoning is a common problem in the catalytic combustion of volatile organic compounds(VOCs).In this work,we took three-dimensionally ordered macroporous and mesoporous(3DOM)SiO_(2)as the nanoreactor to protect... SO_(2)poisoning is a common problem in the catalytic combustion of volatile organic compounds(VOCs).In this work,we took three-dimensionally ordered macroporous and mesoporous(3DOM)SiO_(2)as the nanoreactor to protect active sites from SO_(2)erosion in the catalytic combustion of benzene.Simultaneously,the confined growth of metal active nanoparticles in the multi-stage pore is also full of challenges.And we successfully confined Co_(3)O_(4)nanoparticles(NPs)in macroporous and mesoporous channels.Interestingly,the precursors’growth in the pore was controlled and nanoreactors with different pore sizes were prepared by adjusting the loading amount and preparation methods.It is discovered that the Co_(3)O_(4)NPs confined in 3DOM SiO_(2)nanoreactor showed superior sulfur and water resistance.Density functional theory(DFT)calculations verified that the Co-Si catalyst had high SO_(2)adsorption energy(-0.48 eV),which illustrated that SO_(2)was hard to attach to the surface of the Co-Si catalyst.The SiO_(2)nanoreactor had low SO_(2)adsorption energy(-5.15 eV),which indicated that SO_(2)was easily absorbed on SiO_(2)nanoreactor.This illustrated that the SiO_(2)nanoreactor could protect effectively active sites from SO_(2)erosion. 展开更多
关键词 zeolitic imidazolate frameworks(ZIFs) Co_(3)O_(4) benzene catalytic combustion nanoreactor sulfur and water resistance
原文传递
Intelligent nanoreactor coupling tumor microenvironment manipulation and H_(2)O_(2)-dependent photothermal-chemodynamic therapy for accurate treatment of primary and metastatic tumors 被引量:1
10
作者 Jie Liu Tianfeng Yang +6 位作者 Handan Zhang Lin Weng Xiuhong Peng Tao Liu Cheng Cheng Yanmin Zhang Xin Chen 《Bioactive Materials》 SCIE CSCD 2024年第4期354-365,共12页
Tumor microenvironment(TME),as the“soil”of tumor growth and metastasis,exhibits significant differences from normal physiological conditions.However,how to manipulate the distinctions to achieve the accurate therapy... Tumor microenvironment(TME),as the“soil”of tumor growth and metastasis,exhibits significant differences from normal physiological conditions.However,how to manipulate the distinctions to achieve the accurate therapy of primary and metastatic tumors is still a challenge.Herein,an innovative nanoreactor(AH@MBTF)is developed to utilize the apparent differences(copper concentration and H_(2)O_(2)level)between tumor cells and normal cells to eliminate primary tumor based on H_(2)O_(2)-dependent photothermal-chemodynamic therapy and suppress metastatic tumor through copper complexation.This nanoreactor is constructed using functionalized MSN incorporating benzoyl thiourea(BTU),triphenylphosphine(TPP),and folic acid(FA),while being co-loaded with horseradish peroxidase(HRP)and its substrate ABTS.During therapy,the BTU moieties on AH@MBTF could capture excessive copper(highly correlated with tumor metastasis),presenting exceptional anti-metastasis activity.Simultaneously,the complexation between BTU and copper triggers the formation of cuprous ions,which further react with H_(2)O_(2)to generate cytotoxic hydroxyl radical(•OH),inhibiting tumor growth via che-modynamic therapy.Additionally,the stepwise targeting of FA and TPP guides AH@MBTF to accurately accu-mulate in tumor mitochondria,containing abnormally high levels of H_(2)O_(2).As a catalyst,HRP mediates the oxidation reaction between ABTS and H_(2)O_(2)to yield activated ABTS•^(+).Upon 808 nm laser irradiation,the activated ABTS•^(+)performs tumor-specific photothermal therapy,achieving the ablation of primary tumor by raising the tissue temperature.Collectively,this intelligent nanoreactor possesses profound potential in inhib-iting tumor progression and metastasis. 展开更多
关键词 nanoreactor H_(2)O_(2)-dependent Photothermal-chemodynamic therapy Copper depletion Tumor metastasis inhibition
原文传递
Spherical Polyelectrolyte Brush Nanoreactor:Preparation of Hollow TiO_(2) Nanospheres and Characterization by Small Angle X-Ray Scattering
11
作者 Yu-Hua Zhang Zi-Yu Zhang +4 位作者 Xin Liu En-Guang Ma Jiang-Tao Guo Li Li Xu-Hong Guo 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第9期1393-1400,I0009,共9页
Titanium dioxide(TiO_(2))hollow nanoparticles present significant potential for photocatalytic applications while their straightforward preparation with precise structure control is still challenging.This work reports... Titanium dioxide(TiO_(2))hollow nanoparticles present significant potential for photocatalytic applications while their straightforward preparation with precise structure control is still challenging.This work reports the approach to preparing tunable hollow TiO_(2) nanospheres by utilization of spherical polyelectrolyte brushes(SPB)as nanoreactors and templates.During the preparation,the evolution of the structure was characterized by small angle X-ray scattering(SAXS),and in combination with dynamic light scattering and transmission electron microscopy.The formation of TiO_(2) shell within the brush(SPB@TiO_(2))is confirmed by the significant increase of the electron density,and its internal structure has been analyzed by fitting SAXS data,which can be influenced by Titanium precursors and ammonia concentration.After calcining SPB@TiO_(2) in a muffle furnace,hollow TiO_(2) nanospheres are produced,and their transition to the anatase crystal form is triggered,as confirmed by X-ray diffraction analysis.Utilizing the advantages of their hollow structure,these TiO_(2) nanospheres exhibit exceptional catalytic degradation efficiency of methylene blue(MB),tetracycline(TC),and 2,4-dichlorophenoxyacetic acid(2,4-D),and also demonstrate excellent recyclability. 展开更多
关键词 Spherical polyelectrolyte brush nanoreactor Hollow titanium dioxide X-ray scattering
原文传递
Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO_(2)cycloaddition
12
作者 Tian Wang Yunqing Zhu +3 位作者 Wei Wang Junfeng Niu Zhiyi Lu Peilei He 《Nano Research》 SCIE EI CSCD 2024年第7期5975-5984,共10页
Covalent organic frameworks(COFs)-based nanoreactors have attracted broad interest in many fields due to their voidconfinement effects.However,the inherent drawback of conventional nanoreactors is the lack of internal... Covalent organic frameworks(COFs)-based nanoreactors have attracted broad interest in many fields due to their voidconfinement effects.However,the inherent drawback of conventional nanoreactors is the lack of internal active sites,which limits their widespread utilization.Herein,we report the construction of hierarchical COF(EB-TFP)nanoreactor with pre-synthesized polyoxometalates(POM,[PV_(2)W_(10)O_(40)]^(5–)(PV_(2)W_(10)))clusters encapsulated inside of COF(POM@COF).PV_(2)W_(10)@EB-TFP anchors nucleophilic-group(Br–ions)and PV_(2)W_(10)anion cluster within the COF framework via electrostatic interactions,which not only simplifies the reaction system but also enhances catalytic efficiency.The reaction performance of the PV_(2)W_(10)@EB-TFP nanoreactor can be tuned to achieve excellent catalytic activity in CO_(2)cycloaddition reaction(CCR)for~97.63%conversion and~100%selectivity under visible light irradiation.A mechanistic study based on density functional theory(DFT)calculations and insitu characterization was also carried out.In summary,we have reported a method for achieving the uniform dispersion of POM single clusters into COF nanoreactor,demonstrating the potential of POM@COF nanoreactor for synergistic photothermal catalytic CO_(2)cycloaddition. 展开更多
关键词 photothermal nanoreactor CO_(2)cycloaddition POLYOXOMETALATE photothermal-synergistic catalysis covalent organic frameworks
原文传递
NIR-II light triggered burst-release cascade nanoreactor for precise cancer chemotherapy
13
作者 Yu-Jing Pan Yang Zhang +8 位作者 Biao-Qi Chen Yi Zhao Jin-Yang Wang Chang-Yong Li Da-Gui Zhang Ranjith Kumar Kankala Shi-Bin Wang Gang Liu Ai-Zheng Chen 《Bioactive Materials》 SCIE CSCD 2024年第3期311-323,共13页
The current strategy of co-delivering copper ions and disulfiram(DSF)to generate cytotoxic CuET faces limitations in achieving rapid and substantial CuET production,specifically in tumor lesions.To overcome this chall... The current strategy of co-delivering copper ions and disulfiram(DSF)to generate cytotoxic CuET faces limitations in achieving rapid and substantial CuET production,specifically in tumor lesions.To overcome this challenge,we introduce a novel burst-release cascade reactor composed of phase change materials(PCMs)encapsulating ultrasmall Cu_(2-x)Se nanoparticles(NPs)and DSF(DSF/Cu_(2-x)Se@PCM).Once triggered by second near-infrared(NIR-II)light irradiation,the reactor swiftly releases Cu_(2-x)Se NPs and DSF,enabling catalytic reactions that lead to the rapid and massive production of Cu_(2-x)Se-ET complexes,thereby achieving in situ chemotherapy.The mechanism of the burst reaction is due to the unique properties of ultrasmall Cu_(2-x)Se NPs,including their small size,multiple defects,and high surface activity.These characteristics allow DSF to be directly reduced and chelated on the surface defect sites of Cu_(2-x)Se,forming Cu_(2-x)Se-ET complexes without the need for copper ion release.Additionally,Cu_(2-x)Se-ET has demonstrated a similar(to CuET)anti-tumor activity through increased autophagy,but with even greater potency due to its unique two-dimensional-like structure.The light-triggered cascade of interlocking reactions,coupled with in situ explosive generation of tumor-suppressive substances mediated by the size and valence of Cu_(2-x)Se,presents a promising approach for the development of innovative nanoplatforms in the field of precise tumor chemotherapy. 展开更多
关键词 Ultrasmall Cu_(2-x)Se nanoparticles High surface activity nanoreactor Phase change materials Precise chemotherapy
原文传递
Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core-shell nanoreactors 被引量:6
14
作者 Mengmeng Sun Qiang Fu +4 位作者 Lijun Gao Yanping Zheng Yangyang Li Mingshu Chen Xinhe Bao 《Nano Research》 SCIE EI CAS CSCD 2017年第4期1403-1412,共10页
Core-shell nanostructures consisting of active metal cores and protective shells often exhibit enhanced catalytic performance, in which reactants can access a small part of the core surfaces through the pores in the s... Core-shell nanostructures consisting of active metal cores and protective shells often exhibit enhanced catalytic performance, in which reactants can access a small part of the core surfaces through the pores in the shells. In this study, we show that Pt nanoparticles (NPs) can be embedded into few-layer hexagonal boron nitride (h-BN) overlayers, forming Pt@h-BN core-shell nanocatalysts. The h-BN shells not only protect the Pt NPs under harsh conditions but also allow gaseous molecules such as CO and 02 to access a large part of the Pt surfaces through a facile intercalation process. As a result, the Pt@h-BN nanostructures act as nanoreactors, and CO oxidation reactions with improved activity, selectivity, and stability occur at the core-shell interfaces. The confinement effect exerted by the h-BN shells promotes the Pt-catalyzed reactions. Our work suggests that two-dimensional shells can function as robust but flexible covers on nanocatalyst surfaces and tune the surface reactivity. 展开更多
关键词 CORE-SHELL CO oxidation PT hexagonal boron nitride nanoreactor
原文传递
Plasmonic coupling-enhanced in situ photothermal nanoreactor with shape selective catalysis for C–C coupling reaction 被引量:4
15
作者 Zhenxing Li Yixuan Gong +8 位作者 Xin Zhang Yangyang Wen Jiasai Yao Mingliang Hu Miao He Jiahao Liu Rui Li Fuqiang Wang Chuanxin Zhang 《Nano Research》 SCIE EI CAS CSCD 2020年第10期2812-2818,共7页
Carbon-carbon(C–C)coupling reactions represent one of the most powerful tools for the synthesis of complex natural products,bioactive molecules developed as drugs and agrochemicals.In this work,a multifunctional nano... Carbon-carbon(C–C)coupling reactions represent one of the most powerful tools for the synthesis of complex natural products,bioactive molecules developed as drugs and agrochemicals.In this work,a multifunctional nanoreactor for C–C coupling reaction was successfully fabricated via encapsulating the core-shell Cu@Ni nanocubes into ZIF-8(Cu@Ni@ZIF-8).In this nanoreactor,Ni shell of the core-shell Cu@Ni nanocubes was the catalytical active center,and Cu core was in situ heating source for the catalyst by absorbing the visible light.Moreover,benefiting from the plasmonic resonance effect between Cu@Ni nanocubes encapsulated in ZIF-8,the absorption range of nanoreactor was widened and the utilization rate of visible light was enhanced.Most importantly,the microporous structure of ZIF-8 provided shape-selective of reactant.This composite was used for the highly shape-selective and stable photocatalysed C–C coupling reaction of boric acid under visible light irradiation.After five cycles,the nanoreactor still remained high catalytical activity.This Cu@Ni@ZIF-8 nanoreactor opens a way for photocatalytic C–C coupling reactions with shape-selectivity. 展开更多
关键词 nanoreactor metal-organic framework photocatalysis shape selective catalysis C–C coupling reaction
原文传递
A pH-switched mesoporous nanoreactor for synergetic therapy 被引量:2
16
作者 Zhengqing Yan Andong Zhao +2 位作者 Xinping Liu Jinsong Ren Xiaogang Qu 《Nano Research》 SCIE EI CAS CSCD 2017年第5期1651-1661,共11页
Zinc oxide nanoparticles (ZnO NPs), as a new type of pH-sensitive drug carrier, have received much attention. ZnO NPs are stable at physiological pH, but can dissolve quickly in the acidic tumor environment (pH 〈 ... Zinc oxide nanoparticles (ZnO NPs), as a new type of pH-sensitive drug carrier, have received much attention. ZnO NPs are stable at physiological pH, but can dissolve quickly in the acidic tumor environment (pH 〈 6) to generate cytotoxic zinc ions and reactive oxygen species (ROS). However, the protein corona usually causes the non-specific degradation of ZnO NPs, which has limited their application considerably. Herein, a new type of pH-sensitive nanoreactor (ZnO-DOX@F-mSiO2-FA), aimed at reducing the non-specific degradation of ZnO NPs, is presented. In the acidic tumor environment (pH 〈 6), it can release cytotoxic zinc ions, ROS, and anticancer drugs to kill cancer cells effectively. In addition, the fluorescence emitted from fluorescein isothiocyanate (FITC)-labeled mesoporous silica (F-mSiO2) and doxorubicin (DOX) can be used to monitor the release behavior of the anticancer drug. This report provides a new method to avoid the non-specific degradation of ZnO NPs, resulting in synergetic therapy by taking advantage of ZnO NPs-induced oxidative stress and targeted drug release. 展开更多
关键词 zinc oxide mesoporous nanoreactor non-specific degradation controllable release fluorescent imaging
原文传递
Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells 被引量:4
17
作者 Lei Wang Shuangke Liu +7 位作者 Jin Hu Xianan Zhang Xin Li Guanhua Zhang Yujie Li Chunman Zheng Xiaobin Hong Huigao Duan 《Nano Research》 SCIE EI CAS CSCD 2021年第5期1355-1363,共9页
Despite great progress of lithium-sulfur(Li-S)battery performance at the laboratory-level,both key parameters and challenges at cell scales to achieve practical high energy density require high-sulfur-loading cathodes... Despite great progress of lithium-sulfur(Li-S)battery performance at the laboratory-level,both key parameters and challenges at cell scales to achieve practical high energy density require high-sulfur-loading cathodes and lean electrolytes.Herein,a novel carbon foam integrated by hollow carbon bubble nanoreactors with ultrahigh pore volume of 6.9 cm3·g−1 is meticulously designed for ultrahigh sulfur content up to 96 wt.%.Tailoring polysulfide trapping and ion/electron transport kinetics during the charge-discharge process can be achieved by adjusting the wall thickness of hollow carbon bubbles.And a further in-depth understanding of electrochemical reaction mechanism for the cathode is impelled by the in-situ Raman spectroscopy.As a result,the as-prepared cathode delivers high specific capacitances of 1,269 and 695 mAh·g−1 at 0.1 and 5 C,respectively.Furthermore,Li-S pouch cells with high areal sulfur loading of 6.9 mg·cm−2 yield exceptional practical energy density of 382 Wh·kg−1 under lean electrolyte of 3.5µL·mg−1,which demonstrates the great potential for realistic high-energy Li-S batteries. 展开更多
关键词 hollow carbon bubble nanoreactors ultrahigh pore volume tunable wall thickness high energy density lithium-sulfur batteries
原文传递
Albumin nanoreactor-templated synthesis of Gd_2O_3/CuS hybrid nanodots for cancer theranostics 被引量:3
18
作者 温茹 吕小燕 +6 位作者 杨涛 李誉 唐永安 柏欣 柯亨特 沈钧康 陈华兵 《Science China Materials》 SCIE EI CSCD 2017年第6期554-562,共9页
It remains a great challenge to explore the facile way to fabricate multi-component nanoparticles in theranostic nanomedicine. Herein, an albumin nanoreactor templated synthesis of theranostic Gd203/CuS hybrid nanodo... It remains a great challenge to explore the facile way to fabricate multi-component nanoparticles in theranostic nanomedicine. Herein, an albumin nanoreactor templated synthesis of theranostic Gd203/CuS hybrid nanodots (NDs) has been developed for multimodal imaging guided photothermal tumor ablation. Gd2O3/CuS NDs are found to possess particle size of 4.4 ± 1.1nm, enhanced longitudinal relaxivity, effective photothermal conversion of 45.5%, as well as remarkable near-infrared fluorescence (NIRF) from Cy7.5-conjugated on albumin corona. The Gd203/CuS NDs further exhibited good photostability, en- hanced cellular uptake, and preferable tumor accumulation. Thus, the Gd203/CuS NDs generate remarkable NIRF imag- ing and Tl-weighted magnetic resonance (MR) imaging, and simultaneously result in effective photothermal tumor ab- lation upon irradiation. The albumin nanoreactor provides a facile and general strategy to synthesize multifunctional nanoparticles for cancer theranostics. 展开更多
关键词 albumin nanoreactor NANODOT THERANOSTICS pho tothermal therapy magnetic resonance imaging
原文传递
Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy 被引量:2
19
作者 Peng Wang Fang Zhou +3 位作者 Xia Yin Qingji Xie Guosheng Song Xiao-Bing Zhang 《Nano Research》 SCIE EI CSCD 2022年第10期9264-9273,共10页
Bioorthogonal cleavage reaction-triggered prodrug activation by the pretargeted methods can achieve accurate cancer therapy.However,the click and release efficiency of these methods in vivo is limited by the space-tim... Bioorthogonal cleavage reaction-triggered prodrug activation by the pretargeted methods can achieve accurate cancer therapy.However,the click and release efficiency of these methods in vivo is limited by the space-time dislocation of bioorthogonal prodrug-trigger pairs within the tumor area,caused by their asynchronous administration and inconsistent accumulation for most delivery systems.We herein created a nanovoid-confinement and click-activated(NCCA)core–shell nanoreactor by incorporating prodrugs within zeolitic imidazolate framework-90(ZIF-90)as core and coating tetrazine-based covalent organic framework(COF)as shell.After surface modification of aptamer polymer,the NCCA nanoreactor enabled the sufficient delivery of photodynamic prodrugs within tumor.Notably,the core of ZIF-90 was decomposed by tumor acidic environment,inducing the high-efficiency activation of photodynamic prodrugs via nanoconfined bioorthogonal reaction with tetrazine-based COF shell.As a result,such photodynamic agents are efficiently and safely accumulated into tumor and specifically activated for precise photodynamic therapy of cancer cells and tumor bearing mice with minimizing toxic side effect.Taken together,such NCCA nanoreactor clearly demonstrates the critical feasibility to realize the synchronous delivery of both prodrugs and triggers for precise treatment,which most of delivery systems are not able to afford. 展开更多
关键词 nanoreactor covalent organic framework bioorthogonal reaction PRODRUG photodynamic therapy
原文传递
CoP@SiO2nanoreactors: A core-shell structure for efficient electrocatalytic oxygen evolution reaction 被引量:2
20
作者 Ling Jin Huan Pang 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2300-2304,共5页
Metallic phosphides as a crucial class of metal-like compounds show high electric conductivity and electrochemical properties.It is of significant benefit to understanding the relationship between the electrocatalytic... Metallic phosphides as a crucial class of metal-like compounds show high electric conductivity and electrochemical properties.It is of significant benefit to understanding the relationship between the electrocatalytic performance and phosphating degree of precursors.In this work,using Co3O4@SiO2 as precursor,core-shell structured CoP@SiO2 nanoreactors with outstanding oxygen evolution reaction performance were synthesized through a facile calcination method.The electrocatalytic performance of CoP@SiO2 modified electrode that treated with 500 mg NaH2PO2 was greatly enhanced.The obtained product displays a low overpotential of 280 mV at a current density of 10 mA/cm2 and a Tafel value 89 mV/dec in alkaline conditions.The easy available CoP@SiO2 with outstanding catalytic performance and stability possesses huge potential in future electrochemical applications. 展开更多
关键词 Core-shell structure PHOSPHATING nanoreactorS Oxygen evolution reaction Silicon shell
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部