In this paper,a wave generating approach for long-crest irregular waves in a numerical tank by our in-house solver naoe-FOAM-SJTU is presented.The naoe-FOAM-SJTU solver is developed using an open source tool kit,Open ...In this paper,a wave generating approach for long-crest irregular waves in a numerical tank by our in-house solver naoe-FOAM-SJTU is presented.The naoe-FOAM-SJTU solver is developed using an open source tool kit,Open FOAM.Reynolds-averaged Navier?Stokes(RANS) equations are chosen as governing equations and the volume of fluid(VOF) is employed to capture the two phases interface.Incoming wave group is generated by imposing the boundary conditions of the tank inlet.A spectrum based correction procedure is developed to make the measured spectrum approaching to the target spectrum.This procedure can automatically adjust the wave generation signal based on the measured wave elevation by wave height probe in numerical wave tank.After 3 to 4 iterations,the measured spectrum agrees well with the target one.In order to validate this method,several wave spectra are chosen and validated in the numerical wave tank,with comparison between the final measured and target spectra.In order to investigate a practical situation,a modified Wigley hull is placed in the wave tank with incoming irregular waves.The wave-induced heave and pitch motions are treated by Fourier analysis to obtain motion responses,showing good agreements with the measurements.展开更多
Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of direct...Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.展开更多
A CFD solver naoe-FOAM-SJTU (The abbreviation naoe stands for naval architecture and ocean engineering) is developed based on the open source platform OpenFOAM with the purpose of simulating various marine hydrodynami...A CFD solver naoe-FOAM-SJTU (The abbreviation naoe stands for naval architecture and ocean engineering) is developed based on the open source platform OpenFOAM with the purpose of simulating various marine hydrodynamic problems.In the present paper,self-developed modules,i.e.,wave generation and absorption,6 degrees of freedom motion,mooring system,dynamic overset grid,fluid-structure interaction,unsteady actuator line model,implemented on the open source platform OpenFOAM are introduced to illustrate the development of the marine hydrodynamics CFD solver.Furthermore,extensive simulations of marine hydrodynamic problems using the developed modules are conducted and validated by available experimental data.It has been proved that the CFD solver naoe-FOAM-SJTU is suitable and reliable in predicting the complex viscous flow around ship and offshore structures.Efficiency and accuracy need to be focused in the future development of the present CFD solver.展开更多
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a con...The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.展开更多
The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-S...The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths ( 0.8Lpp 〈 2 〈 1.5L ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.51379125,51411130131,11432009,and 51490675)the Chang Jiang Scholars Program(Grant No.T2014099)+3 种基金the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(Grant No.2016-23)the Foundation of State key Laboratory of Ocean Engineering(Grant No.GKZD010065)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(Grant No.2013022)center for HPC at Shanghai Jiao Tong University,and Lloyd’s Register Foundation(LRF)
文摘In this paper,a wave generating approach for long-crest irregular waves in a numerical tank by our in-house solver naoe-FOAM-SJTU is presented.The naoe-FOAM-SJTU solver is developed using an open source tool kit,Open FOAM.Reynolds-averaged Navier?Stokes(RANS) equations are chosen as governing equations and the volume of fluid(VOF) is employed to capture the two phases interface.Incoming wave group is generated by imposing the boundary conditions of the tank inlet.A spectrum based correction procedure is developed to make the measured spectrum approaching to the target spectrum.This procedure can automatically adjust the wave generation signal based on the measured wave elevation by wave height probe in numerical wave tank.After 3 to 4 iterations,the measured spectrum agrees well with the target one.In order to validate this method,several wave spectra are chosen and validated in the numerical wave tank,with comparison between the final measured and target spectra.In order to investigate a practical situation,a modified Wigley hull is placed in the wave tank with incoming irregular waves.The wave-induced heave and pitch motions are treated by Fourier analysis to obtain motion responses,showing good agreements with the measurements.
基金the National Natural Science Foundation of China (51809169,51879159,51490675,11432009, 51579145)Chang Jiang Scholars Program (T2014099)+2 种基金Shanghai Excellent Academic Leaders Program (17XD1402300)Program for Professor of Special Appointment (Eastern Scholar)at Shanghai Institutions of Higher Learning (2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09).
文摘Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.
基金National Natural Science Foundation of China (Gmt Nos.51809169,51879159,51490675,11432009 and 51579145).
文摘A CFD solver naoe-FOAM-SJTU (The abbreviation naoe stands for naval architecture and ocean engineering) is developed based on the open source platform OpenFOAM with the purpose of simulating various marine hydrodynamic problems.In the present paper,self-developed modules,i.e.,wave generation and absorption,6 degrees of freedom motion,mooring system,dynamic overset grid,fluid-structure interaction,unsteady actuator line model,implemented on the open source platform OpenFOAM are introduced to illustrate the development of the marine hydrodynamics CFD solver.Furthermore,extensive simulations of marine hydrodynamic problems using the developed modules are conducted and validated by available experimental data.It has been proved that the CFD solver naoe-FOAM-SJTU is suitable and reliable in predicting the complex viscous flow around ship and offshore structures.Efficiency and accuracy need to be focused in the future development of the present CFD solver.
基金Project supported by the National Natural Science Foundation of China(5137912551490675+3 种基金114320095157914511272120)the Chang Jiang Scholars Program of China(T2014099)~~
文摘The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 50739004 and 11072154)
文摘The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths ( 0.8Lpp 〈 2 〈 1.5L ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.