The three-dimensional natural vibration characteristics of water inside a moon pool of an ocean structures are studied. The governing equations are derived based on the linear potential flow theory, and the boundary c...The three-dimensional natural vibration characteristics of water inside a moon pool of an ocean structures are studied. The governing equations are derived based on the linear potential flow theory, and the boundary condition of the total opening bottom suggested by Molin is adopted. A semi-analytical method is used to solve the governing equations, and the natural frequencies and the motion modes are obtained. Two types of motions are studied: (1) the piston motion in the vertical direction, and (2) the sloshing motion of the free surface. The influences of moon pool's structural parameters on the natural frequencies, and the modal shapes are analyzed.展开更多
A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of ...A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.展开更多
Space truss structures are essential components for space-based remote sensing loads with high spatial and temporal resolutions.To achieve high-precision vibration control,an accurate and efficient dynamics model is e...Space truss structures are essential components for space-based remote sensing loads with high spatial and temporal resolutions.To achieve high-precision vibration control,an accurate and efficient dynamics model is essential.In addition to the current equivalent beam model(EBM)based on the classical continuum theory,an improved equivalent beam model(IEBM)is proposed that considers the impact of the distinction between trusses and beams on torsional and shear deformations,as well as the impact of shear deformation on flexural rigidity.According to the displacement expressions of spatial beams,torsional,shear,and bending correction coefficients are introduced to derive expressions of strain energy and kinetic energy.The energy equivalence principle is then utilized to calculate the elasticity and inertia matrices,and dynamics equations are established using the finite element method.Subsequently,an IEBM is constructed by employing the particle swarm optimization approach to determine the correction coefficients with the truss natural frequency as the optimization target.The natural vibration characteristics of the structure are estimated for various material properties.Compared with the full-scale finite element model,the EBM reaches a maximum error of 80%for a low modulus of elasticity,while the maximum error of the IEBM is less than 2%for any given parameters,indicating its superior accuracy to the EBM.展开更多
基金Project supported by the Natural Science Foundation of China(Grant No.51179125)the Greative Research Groups of the Natural Science Foundation of China(Grant No.51621092)the Natural Science Foundation of Tianjin(Grant No.16JCYBJC21200)
文摘The three-dimensional natural vibration characteristics of water inside a moon pool of an ocean structures are studied. The governing equations are derived based on the linear potential flow theory, and the boundary condition of the total opening bottom suggested by Molin is adopted. A semi-analytical method is used to solve the governing equations, and the natural frequencies and the motion modes are obtained. Two types of motions are studied: (1) the piston motion in the vertical direction, and (2) the sloshing motion of the free surface. The influences of moon pool's structural parameters on the natural frequencies, and the modal shapes are analyzed.
基金supported by the Key Project of Science and Technology in an Action of Shanghai Scientific and Technological Innovation (No. 09231201600)the National Natural Science Foundation of China(No. 50823004)the Science and Technology Department of Sichuan Province
文摘A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.
基金supported by the National Natural Science Foundation of China(Grant No.12172213)。
文摘Space truss structures are essential components for space-based remote sensing loads with high spatial and temporal resolutions.To achieve high-precision vibration control,an accurate and efficient dynamics model is essential.In addition to the current equivalent beam model(EBM)based on the classical continuum theory,an improved equivalent beam model(IEBM)is proposed that considers the impact of the distinction between trusses and beams on torsional and shear deformations,as well as the impact of shear deformation on flexural rigidity.According to the displacement expressions of spatial beams,torsional,shear,and bending correction coefficients are introduced to derive expressions of strain energy and kinetic energy.The energy equivalence principle is then utilized to calculate the elasticity and inertia matrices,and dynamics equations are established using the finite element method.Subsequently,an IEBM is constructed by employing the particle swarm optimization approach to determine the correction coefficients with the truss natural frequency as the optimization target.The natural vibration characteristics of the structure are estimated for various material properties.Compared with the full-scale finite element model,the EBM reaches a maximum error of 80%for a low modulus of elasticity,while the maximum error of the IEBM is less than 2%for any given parameters,indicating its superior accuracy to the EBM.