The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in t...The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.展开更多
Crushed rock layers(CRLs),ventilation ducts(VDs)and thermosyphons are air-cooling structures(ACSs)widely used for maintaining the long-term stability of engineered infrastructures in permafrost environments.These ACSs...Crushed rock layers(CRLs),ventilation ducts(VDs)and thermosyphons are air-cooling structures(ACSs)widely used for maintaining the long-term stability of engineered infrastructures in permafrost environments.These ACSs can effectively cool and maintain the permafrost subgrade’s frozen state under climate warming by facilitating heat exchange with ambient air in cold seasons.As convection is a crucial working mechanism of these ACSs,it is imperative to understand the near-surface wind flow(NSWF)across a constructed infrastructure,such as an embankment.This article describes a yearlong field observation of the NSWF across an experimental expressway embankment,the first of its kind on the Qinghai–Tibet Plateau(QTP).The wind speed and direction along a transect perpendicular to the embankment on both the windward and leeward sides and at four different heights above the ground surface were collected and analyzed.The results showed that the embankment has a considerable impact on the NSWF speed within a distance of up to ten times its height,and in the direction on the leeward side.A power law can well describe the speed profiles of NSWF across the embankment,with the power-law indices(PLIs)varying from 0.14 to 0.40.On an annual basis,the fitted NSWF PLI far away from the embankment was 0.19,which differs substantially from the values widely used in previous thermal performance evaluations of ACSs on the QTP.Finally,the significance of the NSWF to the thermal performance of the ACSs,particularly the CRLs and VDs,in linear transportation infrastructure is discussed.It is concluded that underestimating the PLI and neglecting wind direction variations may lead to unconservative designs of the ACSs.The results reported in this study can provide valuable guidance for infrastructure engineering on the QTP and other similar permafrost regions.展开更多
The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(Ca...The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.展开更多
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of ups...Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.展开更多
An increasing number of palaeo-climatic records have been reported to identify the Holocene climate history in the arid Xinjiang region of northwest China. However, few studies have fully considered the internal linka...An increasing number of palaeo-climatic records have been reported to identify the Holocene climate history in the arid Xinjiang region of northwest China. However, few studies have fully considered the internal linkages within the regional climate system, which may limit our understanding of the forcing mechanisms of Holocene climate change in this region. Here, we systematically consider three major issues of the moisture/precipitation, temperature and near-surface wind relevant to the Holocene climate history of Xinjiang. First, despite there still has debated for the Holocene moisture evolution in this region, more climatic reconstructions from lake sediments, loess, sand-dunes and peats support a long-term regional wetting trend. Second, temperature records from ice cores, peats and stalagmites demonstrate a long-term winter warming trend during the Holocene in middle-to high-latitudes of Asia. Third, recent studies of aeolian sedimentary sequences reveal that the near-surface winds in winter gradually weakened during the Holocene, whereas the winter mid-latitude Westerlies strengthened in the Tienshan Mountains. Based on this evidence, in the arid Xinjiang region we propose an early to middle Holocene relatively cold and dry interval, with strong near-surface winds;and a warmer, wetter interval with weaker near-surface winds in the middle to late Holocene during winter. Additionally,we develop a conceptual model to explain the pattern of Holocene climate changes in this region.From the early to the late Holocene, the increasing atmospheric COcontent and winter insolation,and the shrinking of high-latitude continental ice-sheets, resulted in increasing winter temperatures in middle to high latitudes in the Northern Hemisphere. Subsequently, the increased winter temperature strengthened the winter mid-latitude Westerlies and weakened the Siberian high-pressure system,which caused an increase in winter precipitation and a decrease in near-surface wind strength. This scenario is strongly supported by evidence from geological records, climate simulation results, and modern reanalysis data. Our hypothesis highlights the important contribution of winter temperature in driving the Holocene climatic evolution of the arid Xinjiang region, and it implies that the socio-economic development and water resources security of this region will face serious challenges presented by the increasing winter temperature in the future.展开更多
For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo...For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.展开更多
Dustfall collections were carried out in April and May 2001 and in March 2002 at six sites in northern China.Our results showed that the total deposition of dust fractions 【250 μm in diameter and the deposition of F...Dustfall collections were carried out in April and May 2001 and in March 2002 at six sites in northern China.Our results showed that the total deposition of dust fractions 【250 μm in diameter and the deposition of Fe both decreased exponentially with increasing distances from the source areas,and that the half-attenuation distance (HAD) for dust deposition was about 229 km in this re-gion.The HAD was closely related to the grain-size distribution of the dust,and the 15 to 20 μm fractions had the longest HAD.However,the fractions 【15 μm in diameter can be easily adsorbed to coarse particles and deposited after only short distances,and the HAD for the fractions 15 to 100 μm in diameter showed a power relationship with the grain-size distribution.The HAD for Fe deposition was 233 km,which was a little longer than that of total dust deposition,which suggests that the Fe content is higher in fine particles than in coarse particles,as previous studies have suggested.In addition,our analysis showed that under the control of current climatic conditions,the coarse fractions in dust derived from northwestern China cannot be transported over long distances,instead,it is transported primarily by near-surface winds (【3 km above the ground).The Fe in aeolian dust generated from arid and semiarid regions of China and deposited in the North Pacific region is usually transported by the upper westerlies.展开更多
Based on wind-speed records of Alaska’s 19 first-order weather stations, we analyzed the near-surface wind-speed stilling for January 1, 1984 to December 31, 2016. With exception of Big Delta that indicates an increa...Based on wind-speed records of Alaska’s 19 first-order weather stations, we analyzed the near-surface wind-speed stilling for January 1, 1984 to December 31, 2016. With exception of Big Delta that indicates an increase of 0.0157 m·s–1·a–1, on average, all other first-order weather stations show declining trends in the near-surface wind speeds. In most cases, the average trends are less then?–0.0300?m·s–1·a–1. The strongest average trend of?–0.0500?m·s–1·a–1 occurred at Homer, followed by?–0.0492?m·s–1·a–1 at Bettles, and?–0.0453?m·s–1·a–1 at Yakutat, while the declining trend at Barrow is marginal. The impact of the near-surface wind-speed stilling on the wind-power potential expressed by the wind-power density was predicted and compared with the wind-power classification of the National Renewable Energy Laboratory and the Alaska Energy Authority. This wind-power potential is, however, of subordinate importance because wind turbines only extract a fraction of the kinetic energy from the wind field characterized by the power efficiency. Since wind turbine technology has notably improved during the past 35 years, we hypothetically used seven currently available wind turbines of different rated power and three different shear exponents to assess the wind-power sustainability under changing wind regimes. The shear exponents 1/10, 1/7, and 1/5 served to examine the range of wind power for various conditions of thermal stratification. Based on our analysis for January 1, 1984 to December 31, 2016, Cold Bay, St. Paul Island, Kotzebue, and Bethel would be very good candidates for wind farms. To quantify the impact of a changing wind regime on wind-power sustainability, we predicted wind power for the periods January 1, 1984 to December 31, 1994 and January 1, 2006 to December 31, 2016 as well. Besides Big Delta that suggests an increase in wind power of up to 12% for 1/7, predicted wind power decreased at all sites with the highest decline at Annette (≈38%), Kodiak (≈30%), King Salmon (≈26%), and Kotzebue (≈24%), where the effect of the shear exponents was marginal. Bethel (up to 20%) and Cold Bay (up to 14%) also show remarkable decreases in predicted wind power.展开更多
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data ...In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.展开更多
This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcast...This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.展开更多
A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fiel...A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.展开更多
According to ship observation data over the NW Pacific Ocean during 1950 - 1995. taking 5°×5° grid, the characteristics and variation rule of wind, wave and swell are analyzed. This area is typical mons...According to ship observation data over the NW Pacific Ocean during 1950 - 1995. taking 5°×5° grid, the characteristics and variation rule of wind, wave and swell are analyzed. This area is typical monsoon area. In the period of monsoon, the directions of wind, sea wave and swell are roughly consistent. Sea wave of northeasterly is always prevailing in equatorial zone. The monsoon in winter is stronger than in summer, correspondingly, average wave height is higher, and the frequencies of high sea and heavy swell are also bigger. Both of North Indian Ocean and adjacent sea area is also monsoon area, but characteristic is opposite. This paper provides specific data of wind field and wave field and variaton for ship navigation, operation and scientific experiment in the NW Pacific Ocean.展开更多
Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovati...Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovative form of the POD based on cross power spectral density matrices. By introducing a discretizing scheme, the CPOD-based spectral representation method is obtained for use in stochastic simulation. Moreover, some criteria are proposed that allow the truncation order of CPOD to be conveniently determined. A numerical example to illustrate the application of the proposed method for the simulation of a wind velocity field is provided.展开更多
Chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estim...Chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estimate the building-resolving wind flow as well as pollutant dispersion. However, it takes too much time and requires enormous computational power in emergency situations. As a time demanding task, the estimation of the chemical spill consequence for emergency response requires abundant wind field information. In this paper, a comprehensive wind field reconstruction framework is proposed, providing the ability of parameter tuning for best reconstruction accuracy. The core of the framework is a data regression model built on principal component analysis(PCA) and extreme learning machine(ELM). To improve the accuracy, the wind field estimation from the regression model is further revised from local wind observations. The optimal placement of anemometers is provided based on the maximum projection on minimum eigenspace(MPME) algorithm. The fire dynamic simulator(FDS) generates high-resolution data of wind flow over complex geometries for the framework to be implemented. The reconstructed wind field is evaluated against simulation data and an overall reconstruction error of 9% is achieved. When used in real case,the error increases to around 12% since no convergence check is available. With parameter tuning abilities,the proposed framework provides an efficient way of reconstructing the wind flow in congested areas.展开更多
The methods employed in recent years to retrieve vector wind information from single-Doppler radar observation are reviewed briefly. These methods are based on a linearity hypothesis for the wind field, so the retriev...The methods employed in recent years to retrieve vector wind information from single-Doppler radar observation are reviewed briefly. These methods are based on a linearity hypothesis for the wind field, so the retrieved wind field is sometimes negatively affected by the non-linearity of wind. This paper proposes a new method based on a non-linear approximation technique. This method, which relies on the piecewise smooth property of the wind field and makes full use of the radar velocity data, is applied to two cases of the Huaihe River Basin Energy and Water Cycle Experiment (HUBEX) in 1998. Checked against the wind field observed by dual-Doppler radar, the retrieved wind field by the method presented in this paper yields a relatively accurate horizontal vector wind field with high resolution, as well as a reasonable estimate of the magnitude of vertical velocity.展开更多
Rain cells or convective rain,the dominant form of rain in the tropics and subtropics,can be easy detected by satellite Synthetic Aperture Radar(SAR) images with high horizontal resolution.The footprints of rain cel...Rain cells or convective rain,the dominant form of rain in the tropics and subtropics,can be easy detected by satellite Synthetic Aperture Radar(SAR) images with high horizontal resolution.The footprints of rain cells on SAR images are caused by the scattering and attenuation of the rain drops,as well as the downward airflow.In this study,we extract sea surface wind field and its structure caused by rain cells by using a RADARSAT-2 SAR image with a spatial resolution of 100 m for case study.We extract the sea surface wind speeds from SAR image by using CMOD4 geophysical model function with outside wind directions of NCEP final operational global analysis data,Advance Scatterometer(ASCAT) onboard European Met Op-A satellite and microwave scatterometer onboard Chinese HY-2 satellite,respectively.The root-mean-square errors(RMSE) of these SAR wind speeds,validated against NCEP,ASCAT and HY-2,are 1.48 m/s,1.64 m/s and 2.14 m/s,respectively.Circular signature patterns with brighter on one side and darker on the opposite side on SAR image are interpreted as the sea surface wind speed(or sea surface roughness) variety caused by downdraft associated with rain cells.The wind speeds taken from the transect profile which superposes to the wind ambient vectors and goes through the center of the circular footprint of rain cell can be fitted as a cosine or sine curve in high linear correlation with the values of no less than 0.80.The background wind speed,the wind speed caused by rain cell and the diameter of footprint of the rain cell with kilometers or tens of kilometers can be acquired by fitting curve.Eight cases interpreted and analyzed in this study all show the same conclusion.展开更多
The offshore turbine system was installed on a floating platform moored in Hakata Bay, offshore of Fukuoka, Japan. An identical turbine system was also installed at the adjacent waterfront. The separation of the two t...The offshore turbine system was installed on a floating platform moored in Hakata Bay, offshore of Fukuoka, Japan. An identical turbine system was also installed at the adjacent waterfront. The separation of the two turbines was 3.7 km. Wind flow tends to be more stable and the average wind speed is often larger in offshore areas than adjacent land areas at typical wind turbine hub height. This study focused on the wind condition of a nearshore area to clarify the advantages of nearshore wind farming. Prior to field experiment, wind conditions were predicted by using numerical simulation. It is useful for estimating topographical effect in nearshore areas. Next, field verification test was done by directly comparing wind data obtained from the identical wind turbine systems installed at an offshore location and the adjacent waterfront over the same extended period. The corresponding power output of these turbines was also compared. The data set exhibits 23% larger annual average wind speed at the offshore location and smaller turbulent intensity, resulting doubled annual power production.展开更多
基金the National Key Research and Development Program of China(2020YFA0608403)the National Natural Science Foundation of China(42171083)the Natural Science Foundation of Gansu Province,China(23JRRA601).
文摘The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.
基金the National Natural Science Foundation of China(41630636 and 41772325)China’s Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0905).
文摘Crushed rock layers(CRLs),ventilation ducts(VDs)and thermosyphons are air-cooling structures(ACSs)widely used for maintaining the long-term stability of engineered infrastructures in permafrost environments.These ACSs can effectively cool and maintain the permafrost subgrade’s frozen state under climate warming by facilitating heat exchange with ambient air in cold seasons.As convection is a crucial working mechanism of these ACSs,it is imperative to understand the near-surface wind flow(NSWF)across a constructed infrastructure,such as an embankment.This article describes a yearlong field observation of the NSWF across an experimental expressway embankment,the first of its kind on the Qinghai–Tibet Plateau(QTP).The wind speed and direction along a transect perpendicular to the embankment on both the windward and leeward sides and at four different heights above the ground surface were collected and analyzed.The results showed that the embankment has a considerable impact on the NSWF speed within a distance of up to ten times its height,and in the direction on the leeward side.A power law can well describe the speed profiles of NSWF across the embankment,with the power-law indices(PLIs)varying from 0.14 to 0.40.On an annual basis,the fitted NSWF PLI far away from the embankment was 0.19,which differs substantially from the values widely used in previous thermal performance evaluations of ACSs on the QTP.Finally,the significance of the NSWF to the thermal performance of the ACSs,particularly the CRLs and VDs,in linear transportation infrastructure is discussed.It is concluded that underestimating the PLI and neglecting wind direction variations may lead to unconservative designs of the ACSs.The results reported in this study can provide valuable guidance for infrastructure engineering on the QTP and other similar permafrost regions.
基金National Public Benefit Research Foundation of China (2008416048GYHY201006035)
文摘The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
基金supported by the National Natural Science Foundation of China(Grant No.42304186)China Postdoctoral Science Foundation(2023M743466)+3 种基金the Key Research Program of Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant No.s IGGCAS-201904,IGGCAS-202102)supported by the International Space Science Institute(ISSI)in Bern and Beijing,through ISSI/ISSI-BJ International Team project“Understanding the Mars Space Environment through Multi-Spacecraft Measurements”(ISSI Team project#23–582ISSIBJ Team project#58).
文摘Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0602)the National Natural Science Foundation of China (Grant Nos. 41401046, 42067049)+1 种基金the Education Science and technology Innovation project of Gansu Province (2021QB-118)the Jiangxi Provincial Natural Science Foundation (Grant No. 20202BABL213035)。
文摘An increasing number of palaeo-climatic records have been reported to identify the Holocene climate history in the arid Xinjiang region of northwest China. However, few studies have fully considered the internal linkages within the regional climate system, which may limit our understanding of the forcing mechanisms of Holocene climate change in this region. Here, we systematically consider three major issues of the moisture/precipitation, temperature and near-surface wind relevant to the Holocene climate history of Xinjiang. First, despite there still has debated for the Holocene moisture evolution in this region, more climatic reconstructions from lake sediments, loess, sand-dunes and peats support a long-term regional wetting trend. Second, temperature records from ice cores, peats and stalagmites demonstrate a long-term winter warming trend during the Holocene in middle-to high-latitudes of Asia. Third, recent studies of aeolian sedimentary sequences reveal that the near-surface winds in winter gradually weakened during the Holocene, whereas the winter mid-latitude Westerlies strengthened in the Tienshan Mountains. Based on this evidence, in the arid Xinjiang region we propose an early to middle Holocene relatively cold and dry interval, with strong near-surface winds;and a warmer, wetter interval with weaker near-surface winds in the middle to late Holocene during winter. Additionally,we develop a conceptual model to explain the pattern of Holocene climate changes in this region.From the early to the late Holocene, the increasing atmospheric COcontent and winter insolation,and the shrinking of high-latitude continental ice-sheets, resulted in increasing winter temperatures in middle to high latitudes in the Northern Hemisphere. Subsequently, the increased winter temperature strengthened the winter mid-latitude Westerlies and weakened the Siberian high-pressure system,which caused an increase in winter precipitation and a decrease in near-surface wind strength. This scenario is strongly supported by evidence from geological records, climate simulation results, and modern reanalysis data. Our hypothesis highlights the important contribution of winter temperature in driving the Holocene climatic evolution of the arid Xinjiang region, and it implies that the socio-economic development and water resources security of this region will face serious challenges presented by the increasing winter temperature in the future.
文摘For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.
基金funding from the Natural Science Foundation of China through Grant No. 40638038
文摘Dustfall collections were carried out in April and May 2001 and in March 2002 at six sites in northern China.Our results showed that the total deposition of dust fractions 【250 μm in diameter and the deposition of Fe both decreased exponentially with increasing distances from the source areas,and that the half-attenuation distance (HAD) for dust deposition was about 229 km in this re-gion.The HAD was closely related to the grain-size distribution of the dust,and the 15 to 20 μm fractions had the longest HAD.However,the fractions 【15 μm in diameter can be easily adsorbed to coarse particles and deposited after only short distances,and the HAD for the fractions 15 to 100 μm in diameter showed a power relationship with the grain-size distribution.The HAD for Fe deposition was 233 km,which was a little longer than that of total dust deposition,which suggests that the Fe content is higher in fine particles than in coarse particles,as previous studies have suggested.In addition,our analysis showed that under the control of current climatic conditions,the coarse fractions in dust derived from northwestern China cannot be transported over long distances,instead,it is transported primarily by near-surface winds (【3 km above the ground).The Fe in aeolian dust generated from arid and semiarid regions of China and deposited in the North Pacific region is usually transported by the upper westerlies.
文摘Based on wind-speed records of Alaska’s 19 first-order weather stations, we analyzed the near-surface wind-speed stilling for January 1, 1984 to December 31, 2016. With exception of Big Delta that indicates an increase of 0.0157 m·s–1·a–1, on average, all other first-order weather stations show declining trends in the near-surface wind speeds. In most cases, the average trends are less then?–0.0300?m·s–1·a–1. The strongest average trend of?–0.0500?m·s–1·a–1 occurred at Homer, followed by?–0.0492?m·s–1·a–1 at Bettles, and?–0.0453?m·s–1·a–1 at Yakutat, while the declining trend at Barrow is marginal. The impact of the near-surface wind-speed stilling on the wind-power potential expressed by the wind-power density was predicted and compared with the wind-power classification of the National Renewable Energy Laboratory and the Alaska Energy Authority. This wind-power potential is, however, of subordinate importance because wind turbines only extract a fraction of the kinetic energy from the wind field characterized by the power efficiency. Since wind turbine technology has notably improved during the past 35 years, we hypothetically used seven currently available wind turbines of different rated power and three different shear exponents to assess the wind-power sustainability under changing wind regimes. The shear exponents 1/10, 1/7, and 1/5 served to examine the range of wind power for various conditions of thermal stratification. Based on our analysis for January 1, 1984 to December 31, 2016, Cold Bay, St. Paul Island, Kotzebue, and Bethel would be very good candidates for wind farms. To quantify the impact of a changing wind regime on wind-power sustainability, we predicted wind power for the periods January 1, 1984 to December 31, 1994 and January 1, 2006 to December 31, 2016 as well. Besides Big Delta that suggests an increase in wind power of up to 12% for 1/7, predicted wind power decreased at all sites with the highest decline at Annette (≈38%), Kodiak (≈30%), King Salmon (≈26%), and Kotzebue (≈24%), where the effect of the shear exponents was marginal. Bethel (up to 20%) and Cold Bay (up to 14%) also show remarkable decreases in predicted wind power.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
基金The National Natural Science Foundation of China (No.90815022, 50808160)
文摘In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.
基金supported by the National Natural Science Foundation of China(Grants No.51309092 and 51379072)the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201201045)+1 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province(Grant No.BK20130833)the Fundamental Research Funds for the Central Universities(Grants No.2015B16014 and 2013B03414)
文摘This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.
文摘A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.
文摘According to ship observation data over the NW Pacific Ocean during 1950 - 1995. taking 5°×5° grid, the characteristics and variation rule of wind, wave and swell are analyzed. This area is typical monsoon area. In the period of monsoon, the directions of wind, sea wave and swell are roughly consistent. Sea wave of northeasterly is always prevailing in equatorial zone. The monsoon in winter is stronger than in summer, correspondingly, average wave height is higher, and the frequencies of high sea and heavy swell are also bigger. Both of North Indian Ocean and adjacent sea area is also monsoon area, but characteristic is opposite. This paper provides specific data of wind field and wave field and variaton for ship navigation, operation and scientific experiment in the NW Pacific Ocean.
基金Research Fund for Communications in Western China Under Grant No. 200431800028
文摘Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovative form of the POD based on cross power spectral density matrices. By introducing a discretizing scheme, the CPOD-based spectral representation method is obtained for use in stochastic simulation. Moreover, some criteria are proposed that allow the truncation order of CPOD to be conveniently determined. A numerical example to illustrate the application of the proposed method for the simulation of a wind velocity field is provided.
基金Supported by the National Natural Science Foundation of China(21706069and 61751305)the Fundamental Research Funds for the Central Universities(222201814039).
文摘Chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estimate the building-resolving wind flow as well as pollutant dispersion. However, it takes too much time and requires enormous computational power in emergency situations. As a time demanding task, the estimation of the chemical spill consequence for emergency response requires abundant wind field information. In this paper, a comprehensive wind field reconstruction framework is proposed, providing the ability of parameter tuning for best reconstruction accuracy. The core of the framework is a data regression model built on principal component analysis(PCA) and extreme learning machine(ELM). To improve the accuracy, the wind field estimation from the regression model is further revised from local wind observations. The optimal placement of anemometers is provided based on the maximum projection on minimum eigenspace(MPME) algorithm. The fire dynamic simulator(FDS) generates high-resolution data of wind flow over complex geometries for the framework to be implemented. The reconstructed wind field is evaluated against simulation data and an overall reconstruction error of 9% is achieved. When used in real case,the error increases to around 12% since no convergence check is available. With parameter tuning abilities,the proposed framework provides an efficient way of reconstructing the wind flow in congested areas.
基金The authors would like to express their thanks to the GAME/HUBEX Project Office for assistance.
文摘The methods employed in recent years to retrieve vector wind information from single-Doppler radar observation are reviewed briefly. These methods are based on a linearity hypothesis for the wind field, so the retrieved wind field is sometimes negatively affected by the non-linearity of wind. This paper proposes a new method based on a non-linear approximation technique. This method, which relies on the piecewise smooth property of the wind field and makes full use of the radar velocity data, is applied to two cases of the Huaihe River Basin Energy and Water Cycle Experiment (HUBEX) in 1998. Checked against the wind field observed by dual-Doppler radar, the retrieved wind field by the method presented in this paper yields a relatively accurate horizontal vector wind field with high resolution, as well as a reasonable estimate of the magnitude of vertical velocity.
基金The Joint Foundation of National Natural Science Foundation of China and the Marine Science Center of Shandong Province under contract No.U1406404the National Natural Science Foundation of China under contract Nos 41506206,41306186 and41476152+1 种基金the Global Change and Air-Sea Interaction Project of China under contract No.GASI-03-03-01-01the Open funds of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOED1411
文摘Rain cells or convective rain,the dominant form of rain in the tropics and subtropics,can be easy detected by satellite Synthetic Aperture Radar(SAR) images with high horizontal resolution.The footprints of rain cells on SAR images are caused by the scattering and attenuation of the rain drops,as well as the downward airflow.In this study,we extract sea surface wind field and its structure caused by rain cells by using a RADARSAT-2 SAR image with a spatial resolution of 100 m for case study.We extract the sea surface wind speeds from SAR image by using CMOD4 geophysical model function with outside wind directions of NCEP final operational global analysis data,Advance Scatterometer(ASCAT) onboard European Met Op-A satellite and microwave scatterometer onboard Chinese HY-2 satellite,respectively.The root-mean-square errors(RMSE) of these SAR wind speeds,validated against NCEP,ASCAT and HY-2,are 1.48 m/s,1.64 m/s and 2.14 m/s,respectively.Circular signature patterns with brighter on one side and darker on the opposite side on SAR image are interpreted as the sea surface wind speed(or sea surface roughness) variety caused by downdraft associated with rain cells.The wind speeds taken from the transect profile which superposes to the wind ambient vectors and goes through the center of the circular footprint of rain cell can be fitted as a cosine or sine curve in high linear correlation with the values of no less than 0.80.The background wind speed,the wind speed caused by rain cell and the diameter of footprint of the rain cell with kilometers or tens of kilometers can be acquired by fitting curve.Eight cases interpreted and analyzed in this study all show the same conclusion.
文摘The offshore turbine system was installed on a floating platform moored in Hakata Bay, offshore of Fukuoka, Japan. An identical turbine system was also installed at the adjacent waterfront. The separation of the two turbines was 3.7 km. Wind flow tends to be more stable and the average wind speed is often larger in offshore areas than adjacent land areas at typical wind turbine hub height. This study focused on the wind condition of a nearshore area to clarify the advantages of nearshore wind farming. Prior to field experiment, wind conditions were predicted by using numerical simulation. It is useful for estimating topographical effect in nearshore areas. Next, field verification test was done by directly comparing wind data obtained from the identical wind turbine systems installed at an offshore location and the adjacent waterfront over the same extended period. The corresponding power output of these turbines was also compared. The data set exhibits 23% larger annual average wind speed at the offshore location and smaller turbulent intensity, resulting doubled annual power production.