The usage of renewable energies,including geothermal energy,is expanding rapidly worldwide.The low efficiency of geothermal cycles has consistently highlighted the importance of recovering heat loss for these cycles.T...The usage of renewable energies,including geothermal energy,is expanding rapidly worldwide.The low efficiency of geothermal cycles has consistently highlighted the importance of recovering heat loss for these cycles.This paper proposes a combined power generation cycle(single flash geothermal cycle with trans-critical CO_(2) cycle)and simulates in the EES(Engineering Equation Solver)software.The results show that the design parameters of the proposed system are significantly improved compared to the BASIC single flash cycle.Then,the proposed approach is optimized using the genetic algorithm and the Nelder-Mead Simplex method.Separator pressure,steam turbine output pressure,and CO_(2) turbine inlet pressure are three assumed variable parameters,and exergy efficiency is the target parameter.In the default operating mode,the system exergy efficiency was 32%,increasing to 39%using the genetic algorithm and 37%using the Nelder-Mead method.展开更多
The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-line...The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment.展开更多
Stochastic quadratic programming with recourse is one of the most important topics in the field of optimization. It is usually assumed that the probability distribution of random variables has complete information, bu...Stochastic quadratic programming with recourse is one of the most important topics in the field of optimization. It is usually assumed that the probability distribution of random variables has complete information, but only part of the information can be obtained in practical situation. In this paper, we propose a stochastic quadratic programming with imperfect probability distribution based on the linear partial information (LPI) theory. A direct optimizing algorithm based on Nelder-Mead simplex method is proposed for solving the problem. Finally, a numerical example is given to demonstrate the efficiency of the algorithm.展开更多
基金Yashar Aryanfar is receiving a scholarship from the National Council of Science and Technology(CONACYT)of Mexico to pursue his doctoral studies at the Universidad Autonoma de Ciudad Juarez under Grant No.1162359.
文摘The usage of renewable energies,including geothermal energy,is expanding rapidly worldwide.The low efficiency of geothermal cycles has consistently highlighted the importance of recovering heat loss for these cycles.This paper proposes a combined power generation cycle(single flash geothermal cycle with trans-critical CO_(2) cycle)and simulates in the EES(Engineering Equation Solver)software.The results show that the design parameters of the proposed system are significantly improved compared to the BASIC single flash cycle.Then,the proposed approach is optimized using the genetic algorithm and the Nelder-Mead Simplex method.Separator pressure,steam turbine output pressure,and CO_(2) turbine inlet pressure are three assumed variable parameters,and exergy efficiency is the target parameter.In the default operating mode,the system exergy efficiency was 32%,increasing to 39%using the genetic algorithm and 37%using the Nelder-Mead method.
基金This manuscript is supported by the National Natural Science Foundation of China(No.42174011,41874001 and 42174011).
文摘The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment.
文摘Stochastic quadratic programming with recourse is one of the most important topics in the field of optimization. It is usually assumed that the probability distribution of random variables has complete information, but only part of the information can be obtained in practical situation. In this paper, we propose a stochastic quadratic programming with imperfect probability distribution based on the linear partial information (LPI) theory. A direct optimizing algorithm based on Nelder-Mead simplex method is proposed for solving the problem. Finally, a numerical example is given to demonstrate the efficiency of the algorithm.