期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
Action Recognition in Surveillance Videos with Combined Deep Network Models
1
作者 ZHANG Diankai ZHAO Rui-Wei +3 位作者 SHEN Lin CHEN Shaoxiang SUN Zhenfeng JIANG Yu-Gang 《ZTE Communications》 2016年第B12期54-60,共7页
Action recognition is an important topic in computer vision. Recently, deep learning technologies have been successfully used in lots of applications including video data for sloving recognition problems. However, mos... Action recognition is an important topic in computer vision. Recently, deep learning technologies have been successfully used in lots of applications including video data for sloving recognition problems. However, most existing deep learning based recognition frameworks are not optimized for action in the surveillance videos. In this paper, we propose a novel method to deal with the recognition of different types of actions in outdoor surveillance videos. The proposed method first introduces motion compensation to improve the detection of human target. Then, it uses three different types of deep models with single and sequenced images as inputs for the recognition of different types of actions. Finally, predictions from different models are fused with a linear model. Experimental results show that the proposed method works well on the real surveillance videos. 展开更多
关键词 action recognition deep network models model fusion surveillance video
下载PDF
面向社交网络平台的多模态网络欺凌检测模型研究
2
作者 李猛坤 李柯锦 +3 位作者 王琪 袁晨 吕慧颖 应作斌 《信息安全研究》 北大核心 2025年第2期154-163,共10页
随着社交网络平台的迅速发展,网络欺凌问题日益突出,文本与图片相结合的多样化网络表达形式提高了网络欺凌的检测和治理难度.构建了一个包含文本和图片的中文多模态网络欺凌数据集,将BERT(bidirectional encoder representations from t... 随着社交网络平台的迅速发展,网络欺凌问题日益突出,文本与图片相结合的多样化网络表达形式提高了网络欺凌的检测和治理难度.构建了一个包含文本和图片的中文多模态网络欺凌数据集,将BERT(bidirectional encoder representations from transformers)模型与ResNet50模型相结合,分别提取文本和图片的单模态特征,并进行决策层融合,对融合后的特征进行检测,实现了对网络欺凌与非网络欺凌2个类别的文本和图片的准确识别.实验结果表明,提出的多模态网络欺凌检测模型能够有效识别出包含文本与图片的具有网络欺凌性质的社交网络帖子或者评论,提高了多模态形式网络欺凌检测的实用性、准确性和效率,为社交网络平台的网络欺凌检测和治理提供了一种新的思路和方法,有助于构建更加健康、文明的网络环境. 展开更多
关键词 网络欺凌 多模态 特征融合 检测模型 社交网络平台
下载PDF
集成随机配置网络在输电线路覆冰预测中的应用
3
作者 原辉 胡帆 +2 位作者 范晶晶 俞华 王帅 《测绘通报》 北大核心 2025年第1期29-34,共6页
对输电线路进行覆冰预测是保障电网安全运行的关键技术。由于需要综合考虑地形和气象变化等的影响,覆冰预测是一项具有高维非线性、多模态异质性的复杂任务。本文提出了一种基于集成随机配置网络的深度学习方法预测输电线路覆冰。首先... 对输电线路进行覆冰预测是保障电网安全运行的关键技术。由于需要综合考虑地形和气象变化等的影响,覆冰预测是一项具有高维非线性、多模态异质性的复杂任务。本文提出了一种基于集成随机配置网络的深度学习方法预测输电线路覆冰。首先根据多尺度融合的小波模极大值进行覆冰图像数据边缘检测,提高覆冰线路识别的准确率;然后考虑历史观测数据中的微地理和微气象等特征,通过多种特征要素组合构建Boosting集成学习框架下随机配置网络预测模型,预测输电线路覆冰情况。算例分析结果表明,本文提出的集成模型优于单一模型,可以有效实现覆冰输电线路识别和厚度预测,提高了模型泛化能力和覆冰灾害预测精度。 展开更多
关键词 覆冰预测 随机配置网络 集成学习 预测模型 多尺度融合
下载PDF
基于优化YOLOv8的唐卡图像目标检测方法
4
作者 程维龙 僧冰枫 刘晓静 《软件导刊》 2025年第1期102-108,共7页
唐卡中的元素绘制复杂且存在的多尺度情况会影响目标检测技术任务的准确度。为此,提出一种优化YOLOv8模型的唐卡元素目标检测方法。首先,采用级联融合网络提取图像特征,并将特征提取参数用于后续的特征融合,以有效增加参数利用效率;其次... 唐卡中的元素绘制复杂且存在的多尺度情况会影响目标检测技术任务的准确度。为此,提出一种优化YOLOv8模型的唐卡元素目标检测方法。首先,采用级联融合网络提取图像特征,并将特征提取参数用于后续的特征融合,以有效增加参数利用效率;其次,借鉴双向特征金字塔网络的思想,在同一层的特征信息传递层中增加一条额外的路径实现跨尺度连接,以提升模型特征融合能力;最后,在检测头的回归损失函数中引入ElOU-Loss和ClOU-Loss,考虑边界框回归的多种因素,结合宽高和宽高比参数来提升模型目标定位效率和准确率。实验表明,优化后的YOLOv8模型相较于原有模型参数量、计算量分别下降7.21%、7.23%,mAP50、mAP50-95分别提升3.72%、4.55%;相较于其他目标检测算法优势明显;消融实验也验证了不同改进模块对模型的积极作用。 展开更多
关键词 唐卡图像目标检测 YOLOv8模型 级联融合网络 跨尺度连接 回归损失函数
下载PDF
动态时间序列建模的多模态情感识别方法
5
作者 李佳泽 梅红岩 +1 位作者 贾丽云 李文娅 《计算机工程与应用》 北大核心 2025年第1期196-205,共10页
现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部... 现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部-全局信息,并通过双向序列建模捕获信号中的空间信息。考虑到文本信息对情感分析的重要性,采用基于Transformer模型的卷积神经网络捕捉文本中不同位置间的依赖关系建模较长的上下文信息,最后将两种模态进行融合得到最终的情感分类。模型在IEMOCAP数据集上的实验结果表明,相比其他主流模型具有更好的多模态情感识别效果。 展开更多
关键词 多模态情感分析 动态时间窗口 双向时间序列建模 卷积神经网络 多模态融合
下载PDF
无人机海上舰船目标影像超分辨率重建
6
作者 孙炜玮 崔亚奇 +1 位作者 张少卿 夏沭涛 《现代电子技术》 北大核心 2025年第1期17-22,共6页
针对无人机在获取海上舰船目标影像时面临的实时性与清晰度之间的矛盾,提出一种影像压缩模糊重建方法。该方法利用改进的YOLOv8检测模型和Real-ESRGAN网络,通过数据集构建、网络训练调试和部署运用等步骤,实现了在有限带宽和计算资源环... 针对无人机在获取海上舰船目标影像时面临的实时性与清晰度之间的矛盾,提出一种影像压缩模糊重建方法。该方法利用改进的YOLOv8检测模型和Real-ESRGAN网络,通过数据集构建、网络训练调试和部署运用等步骤,实现了在有限带宽和计算资源环境下地面端高质量舰船目标影像的实时重建。首先利用改进的YOLOv8模型对影像中舰船目标进行精准检测和定位,随后通过Real-ESRGAN网络对压缩及模糊影像进行重建,以恢复影像的高分辨率和细节信息。实验结果表明,该方法不仅显著提升了影像的清晰度和检测准确性,还大幅减少了带宽消耗,满足了无人机舰船识别的高实时性要求,且在资源受限的情况下表现尤为突出。为无人机在海上舰船目标监测领域提供了一种有效的解决方案,不仅提高了无人机的监测和识别能力,也为进一步推进无人机在海洋监测中的广泛应用奠定了基础。 展开更多
关键词 无人机影像 海面舰船 双向特征融合模型 Real-ESRGAN网络 改进的YOLOv8检测模型 海上舰船目标监测
下载PDF
支撑新型配电网数字化规划的图形⁃模型⁃数据融合关键技术 被引量:5
7
作者 余涛 王梓耀 +3 位作者 孙立明 曹华珍 吴亚雄 吴毓峰 《电力系统自动化》 EI CSCD 北大核心 2024年第6期139-153,共15页
配电网规划领域期盼实现智能规划,其愿景在于实现无人或少人干预的全自动规划。在数字化转型的背景下,新型配电网规划将面临图形多样化、场景碎片化、数据规模化三大挑战。文中从图形-模型-数据融合的角度提出三大关键技术:基于电气图... 配电网规划领域期盼实现智能规划,其愿景在于实现无人或少人干预的全自动规划。在数字化转型的背景下,新型配电网规划将面临图形多样化、场景碎片化、数据规模化三大挑战。文中从图形-模型-数据融合的角度提出三大关键技术:基于电气图纸识别和拓扑智能分析的图形-模型融合技术、基于知识驱动的负荷/新能源推演分析和智能决策的模型-数据融合技术、基于多模态数据融合和多时空数据联动的图形-数据融合技术,尝试打破理论研究与数字化工程的壁垒。最后,对未来新型配电网数字化规划的发展进行思考和展望,为实现“以机为主,人机协同”的大闭环模式提供借鉴。 展开更多
关键词 图形-模型-数据融合 配电网 数字化规划 知识驱动 图计算
下载PDF
A Novel Forensic Computing Model 被引量:1
8
作者 XU Yunfeng LU Yansheng 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1865-1868,共4页
According to the requirement of computer forensic and network forensic, a novel forensic computing model is presented, which exploits XML/OEM/RM data model, Data fusion technology, forensic knowledgebase, inference me... According to the requirement of computer forensic and network forensic, a novel forensic computing model is presented, which exploits XML/OEM/RM data model, Data fusion technology, forensic knowledgebase, inference mechanism of expert system and evidence mining engine. This model takes advantage of flexility and openness, so it can be widely used in mining evidence. 展开更多
关键词 forensic computing data fusion inference mechanism hidden Markov model petri network
下载PDF
考虑数据不足和基于合作博弈模型融合的风电机组轴承故障诊断方法
9
作者 李俊卿 胡晓东 +2 位作者 王罗 马亚鹏 何玉灵 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期234-241,共8页
针对风电机组轴承疲劳实验成本高导致故障数据不足的问题,提出基于粒子群算法(PSO)优化的辅助分类器生成对抗网络(ACGAN),利用PSO对ACGAN的参数进行寻优,进而利用ACGAN生成与原始样本高度相似的新样本;针对单一模型对风电机组轴承故障... 针对风电机组轴承疲劳实验成本高导致故障数据不足的问题,提出基于粒子群算法(PSO)优化的辅助分类器生成对抗网络(ACGAN),利用PSO对ACGAN的参数进行寻优,进而利用ACGAN生成与原始样本高度相似的新样本;针对单一模型对风电机组轴承故障诊断的准确率较低的缺点,引进合作博弈理论对多个子模型的诊断结果进行融合,将各个子模型的诊断概率矩阵由合作博弈理论进行融合并输出最终的诊断结果。实验证明,优化后的ACGAN模型和基于合作博弈的模型融合能有效提高轴承故障诊断的准确率。 展开更多
关键词 风电机组 轴承 生成式对抗网络 故障诊断 模型融合 合作博弈
下载PDF
基于双通道特征融合的微博情感分析
10
作者 胥桂仙 王家诚 +1 位作者 张廷 田媛 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第4期62-71,共10页
提出一种基于双通道特征融合的微博情感分析模型.首先将通过BERT预训练语言模型获取的动态词向量作为情感分类模型的输入;然后使用双通道特征提取网络进行特征提取,一方面使用TextCNN-Attention提取文本局部特征,另一方面使用基于图卷... 提出一种基于双通道特征融合的微博情感分析模型.首先将通过BERT预训练语言模型获取的动态词向量作为情感分类模型的输入;然后使用双通道特征提取网络进行特征提取,一方面使用TextCNN-Attention提取文本局部特征,另一方面使用基于图卷积神经网络的神经主题模型提取文本全局主题特征;接着将局部特征和全局特征融合得到最终的文本向量;最后通过Softmax输出情感极性.在构建的微博评论文本数据集上进行实验,本文模型F1值达到91.36%,相比主流基线模型提升0.73%~8.82%,验证了本文模型在情感分析任务上的有效性. 展开更多
关键词 情感分析 预训练语言模型 图卷积神经网络 神经主题模型 特征融合
下载PDF
基于残差密集融合对抗生成网络的PET-MRI图像融合
11
作者 刘尚旺 杨荔涵 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期74-83,I0005,共11页
为了增强核磁共振与正电子发射断层扫描图像融合的纹理细节,摆脱人工设计融合规则对先验知识的依赖.提出了自适应的残差密集生成对抗网络(adaptive dense residual generative adversarial network,ADRGAN)来融合两种模态的医学图像.ADR... 为了增强核磁共振与正电子发射断层扫描图像融合的纹理细节,摆脱人工设计融合规则对先验知识的依赖.提出了自适应的残差密集生成对抗网络(adaptive dense residual generative adversarial network,ADRGAN)来融合两种模态的医学图像.ADRGAN设计了区域残差学习模块与输出级联生成器,在加深网络结构的同时避免特征丢失;然后,设计了基于自适应模块的内容损失函数,强化输出融合图像的内容信息;最后,通过源图像的联合梯度图与融合图像的梯度图构建对抗性博弈来高效训练生成器与鉴别器.实验结果表明,ADRGAN在哈佛医学院MRI/PET数据集的测试中峰值信噪比和结构相似度分别达到55.2124和0.4697,均优于目前最先进的算法;所构建的模型具有端对端和无监督两特性,无需人工干预,也不需要真实数据作为标签. 展开更多
关键词 深度学习 对抗生成网络 多模态图像融合 密集残差网络
下载PDF
基于文本和声学特征的双模态融合抑郁倾向识别算法
12
作者 赵健 崔骞 +1 位作者 石佳 刘岳 《计算机工程》 CAS CSCD 北大核心 2024年第11期49-58,共10页
在抑郁症诊断中,抑郁症患者的面部表情、声音信号和文字等数据可以作为评估抑郁倾向的客观指标。相较于视频,文本和音频模态在处理敏感的个人信息时能更好地保护患者的隐私,并且文本和音频均属于语言模态,相关性较强。针对抑郁倾向识别... 在抑郁症诊断中,抑郁症患者的面部表情、声音信号和文字等数据可以作为评估抑郁倾向的客观指标。相较于视频,文本和音频模态在处理敏感的个人信息时能更好地保护患者的隐私,并且文本和音频均属于语言模态,相关性较强。针对抑郁倾向识别中变长文本数据不易被分析以及手动提取音频特征存在局限性的问题,提出一种基于Transformer的融合网络优化方法。对于文本模态,使用卷积神经网络对文本进行特征提取,得到文本在不同尺度下的局部特征,然后引入Transformer模型来处理全局信息和长距离依赖。对于音频模态,为了降低手动提取音频特征对识别结果的影响,通过使用VGGish网络来自动提取音频特征,并将提取好的音频特征送入Transformer中。最后,为进一步增强文本和音频模态融合网络的识别性能,引入SE通道注意力机制,使模型能够自适应地调整各模态之间的权重分配,更有效地聚焦于关键特征。实验结果表明,双模态融合后的网络准确率达到92.7%,相比仅使用文本或音频模态,准确率分别提升2.9和4.9个百分点。 展开更多
关键词 Transformer模型 VGGish网络 双模态融合 抑郁倾向识别 SE通道注意力机制 深度学习
下载PDF
结合轻量化与多尺度融合的交通标志检测算法 被引量:2
13
作者 兰红 王惠钊 《计算机工程》 CAS CSCD 北大核心 2024年第10期381-392,共12页
交通标志检测在自动驾驶领域具有重要的应用价值,及时准确地检测交通目标对提高驾驶安全性和预防交通事故具有重要意义。针对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,在YOLOv8的结构基础上提出一种结合轻量化与... 交通标志检测在自动驾驶领域具有重要的应用价值,及时准确地检测交通目标对提高驾驶安全性和预防交通事故具有重要意义。针对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,在YOLOv8的结构基础上提出一种结合轻量化与多尺度融合的交通标志检测网络架构M-YOLO,构建M-YOLOs模型来应对高精度需求的检测任务,并调整网络深度得到更轻量化的M-YOLOn模型来解决不同环境下的检测需求。首先针对交通标志目标尺寸小、图像特征流失的问题,通过增加小目标检测层,保留更多的特征信息,提高网络对于小目标的特征学习能力。提出高效多尺度特征金字塔融合网络MPANet,将浅层特征图进行降维与跳跃连接,从而融合更多的图像特征信息。然后提出融合稀疏注意力和空间注意力的BRSA注意力模块,有效提取全局和局部的位置信息,减少复杂背景下对于关键信息的干扰。最后设计两种轻量高效的BBot模块和C2fGhost模块,以提高模型运算速度并减少参数量。实验结果表明,M-YOLO相较于YOLOv8,参数量降低约1/3。在TT100K数据集和GTSDB数据集上,M-YOLOs检测精度分别提升了9.7和2.1个百分点,M-YOLOn检测精度分别提升了14.5和2.6个百分点,在轻量化的同时具备更高的检测效果。M-YOLO架构解决了浅层特征图在特征提取过程中信息丢失的问题,并显著降低模型特征提取过程中冗余的计算开销,在实景采集的数据集上证实效果有效,表明在交通标志检测任务中具有应用价值。 展开更多
关键词 卷积神经网络 轻量化模型 目标检测 注意力模块 多尺度融合
下载PDF
基于DS证据理论的电网信息自动融合模型构建
14
作者 汤德荣 《佳木斯大学学报(自然科学版)》 CAS 2024年第7期52-55,共4页
多智能体感知的智能电网信息中,通常存在信息冗余与缺失等问题。为解决这些问题,研究构建智能电网多智能体信息自动化融合模型,精准自动化融合多智能体信息,改进DS证据组合规则,完成决策级信息自动化融合,提升自动化融合效果,为智能电... 多智能体感知的智能电网信息中,通常存在信息冗余与缺失等问题。为解决这些问题,研究构建智能电网多智能体信息自动化融合模型,精准自动化融合多智能体信息,改进DS证据组合规则,完成决策级信息自动化融合,提升自动化融合效果,为智能电网的后续应用,提供更加全面的信息。 展开更多
关键词 智能电网 多智能体信息 自动化 融合模型 神经网络
下载PDF
基于CNN及LSTM融合模型的上证指数预测
15
作者 李铖健 孙海燕 《计算机仿真》 2024年第7期299-302,435,共5页
在CNN以及LSTM的外接以及内嵌两种融合模型的基础上,依据上证指数特征对内嵌模型中的部分结构进行调整改进,并为步长参数选择提供充分的理论依据,同时综合考虑样本股特征,分别对上证指数及成份股数据构建融合预测模型,对上证指数的收盘... 在CNN以及LSTM的外接以及内嵌两种融合模型的基础上,依据上证指数特征对内嵌模型中的部分结构进行调整改进,并为步长参数选择提供充分的理论依据,同时综合考虑样本股特征,分别对上证指数及成份股数据构建融合预测模型,对上证指数的收盘价进行预测。多组模型的对比实验结果表明,所构建的融合模型能够更加准确地把握数据的结构特征与时序性质,自动挖掘数据内部的相关关系,实现上证指数中的准确预测,为金融研究中的模型选择提供一定参考。 展开更多
关键词 深度学习 循环神经网络 卷积神经网络 融合模型 指数预测
下载PDF
基于模型融合和生成网络的有效阵位智能决策方法
16
作者 郭力强 马亮 +3 位作者 张会 杨静 李连峰 翟雅琪 《系统仿真学报》 CAS CSCD 北大核心 2024年第7期1573-1585,共13页
军事智能技术是当前最具活力的前沿领域和未来无人装备发展的必然趋势。针对无人平台在复杂环境下自主决策可靠性和实时性的双重需求和现有基于规则推演的作战仿真技术在动态性和灵活性方面的不足,采用原理分析与实验验证的研究方法,在... 军事智能技术是当前最具活力的前沿领域和未来无人装备发展的必然趋势。针对无人平台在复杂环境下自主决策可靠性和实时性的双重需求和现有基于规则推演的作战仿真技术在动态性和灵活性方面的不足,采用原理分析与实验验证的研究方法,在某型无人平台射击实验数据集的基础上,围绕攻击决策的有效阵位识别环节,将其转换为机器学习领域类别不平衡的二分类问题,综合采用相关性分析、特征工程、模型融合技术构建高实时性和灵活性的有效阵位智能决策模型,并提出基于ICGAN-Stacking不平衡分类架构对少数类样本进行定向扩充,实现数据增强和模型性能提升。实验结果表明:所提方法召回率提升了4.1%、精确度提升了0.4%、F1值提升了1.5%、AUC值达到90.9%,能够满足无人平台执行作战任务实时性和可靠性需求。 展开更多
关键词 军事智能 无人平台 模型融合 生成对抗网络 不平衡分类
下载PDF
融入类别标签和主题信息的用户兴趣识别方法 被引量:1
17
作者 康智勇 李弼程 林煌 《计算机科学》 CSCD 北大核心 2024年第S01期661-668,共8页
社交网络用户兴趣发现对信息过载缓解、个性化推荐和信息传播正向引导等方面具有重要意义。目前已有的兴趣识别研究未能同时考虑文本主题信息及其对应的类别标签信息对模型学习文本特征的帮助,文中提出了一种融入类别标签和主题信息的... 社交网络用户兴趣发现对信息过载缓解、个性化推荐和信息传播正向引导等方面具有重要意义。目前已有的兴趣识别研究未能同时考虑文本主题信息及其对应的类别标签信息对模型学习文本特征的帮助,文中提出了一种融入类别标签和主题信息的用户兴趣识别方法。首先,利用BERT预训练模型、BiLSTM模型和多头自注意力机制分别获取文本和标签序列的语义特征;其次,引入标签注意力机制,使模型更加关注文本与其类别标签更相关的词语信息;然后,利用LDA主题模型和Word2Vec模型得到文本主题特征;接着,设计门控机制进行特征融合,使模型能够自适应地融合多种特征,进而实现微博文本兴趣类别分类;最后,统计用户发表的所有文本在各个兴趣类别上的数量,将数量最多的兴趣类别确定为用户兴趣识别结果。为验证所提方法的有效性,文中构建了一个微博兴趣识别数据集。实验结果表明,该模型在微博文本兴趣类别分类和用户兴趣识别任务中均取得了最优性能。 展开更多
关键词 社交网络 兴趣识别 主题模型 标签注意力机制 特征融合
下载PDF
基于改进MobileNetV2的棉花颜色分级检测 被引量:2
18
作者 王中璞 吴正香 +2 位作者 尤美路 张立杰 阿不都热西提·买买提 《棉纺织技术》 CAS 2024年第6期15-21,共7页
针对棉花颜色级检验中感官检验容易受到主观因素影响、仪器检验不稳定的问题,提出一种使用改进MobileNetV2神经网络实现棉花颜色级检测的方法。通过自主设计的图像采集装置,收集白棉一级到白棉五级5种棉花颜色级样品,制作数据集。将Mobi... 针对棉花颜色级检验中感官检验容易受到主观因素影响、仪器检验不稳定的问题,提出一种使用改进MobileNetV2神经网络实现棉花颜色级检测的方法。通过自主设计的图像采集装置,收集白棉一级到白棉五级5种棉花颜色级样品,制作数据集。将MobileNetV2网络后三层进行特征融合,并嵌入CBAM注意力机制,同时与GhostNet、ShuffleNetV2和原始MobileNetV2模型进行对比,预测棉花颜色分级。结果表明:改进后的MobileNetV2在测试集的准确率达到92.10%,相对于GhostNet、ShuffleNetV2和原始MobileNetV2分别提高了3.01个百分点、4.61个百分点、1.24个百分点,具有较好的检测效果。 展开更多
关键词 MobileNetV2模型 棉花颜色级 神经网络 注意力机制 特征融合
下载PDF
基于听觉特征融合的煤矸识别方法研究 被引量:1
19
作者 杨政 王世博 +4 位作者 饶柱石 杨善国 杨建华 刘送永 刘后广 《振动与冲击》 EI CSCD 北大核心 2024年第8期136-144,共9页
针对强噪声背景下综放开采过程中垮落煤矸难以识别问题,提出了一种融合低级听觉特征Mel频谱和高级听觉特征听觉神经递质发放率的煤矸识别方法。首先,根据煤矸垮落冲击液压支架尾梁声音信号频谱特点,基于听觉神经滤波器组模型构建了适用... 针对强噪声背景下综放开采过程中垮落煤矸难以识别问题,提出了一种融合低级听觉特征Mel频谱和高级听觉特征听觉神经递质发放率的煤矸识别方法。首先,根据煤矸垮落冲击液压支架尾梁声音信号频谱特点,基于听觉神经滤波器组模型构建了适用于煤矸识别任务的听觉模型;然后,利用听觉模型对煤矸垮落声音信号进行分析,获得听觉神经递质发放率;再次,将听觉神经递质发放率与通过Mel频谱提取的峰值特征进行融合,得到煤矸声音听觉感知图;最后,基于所构建的听觉感知图,利用ConvNeXt模型进行煤矸识别。试验结果表明,采用融合听觉特征的煤矸识别方法在不同信噪比下均具有较高的识别准确率;其优越性在背景噪声较大的工况下(信噪比为-5 dB)尤为明显,准确率仍能达到91.52%,显著优于以低级听觉特征和频谱图作为识别特征和利用时频域特征结合机器学习的煤矸识别方法,验证了融合听觉特征的煤矸识别方法对噪声具有优越的鲁棒性。 展开更多
关键词 放顶煤 煤矸识别 听觉模型 听觉神经递质 特征融合 卷积神经网络
下载PDF
多尺度数字岩石建模进展与展望
20
作者 吴翔 肖占山 +3 位作者 张永浩 王飞 赵建斌 方朝强 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第5期1736-1751,共16页
数字岩石技术可对岩心进行精细数字化表征,结合数值模拟方法研究微观岩石物理属性。非常规储层岩石在不同尺度上表现出不同的特征,多尺度成像技术能以亚纳米—毫米级分辨率观测不同尺度的岩石微观组构,然而单一分辨率扫描方法无法解析... 数字岩石技术可对岩心进行精细数字化表征,结合数值模拟方法研究微观岩石物理属性。非常规储层岩石在不同尺度上表现出不同的特征,多尺度成像技术能以亚纳米—毫米级分辨率观测不同尺度的岩石微观组构,然而单一分辨率扫描方法无法解析跨尺度结构信息,构建多尺度、多分辨率、多组分的数字岩石模型是解决这一矛盾的关键方法。通过系统的调研,将现有的多尺度数字岩石建模方法分为两大类,分别为基于混合叠加、模板匹配和深度学习的图像融合建模方法,以及带有显式微孔网络、仅添加额外喉道和含裂缝系统的孔隙网络整合建模方法。其中:图像融合建模法能够真实反映不同尺度岩心的孔隙、矿物三维分布并进行多物理场模拟,但受计算效率限制难以实现尺度差异较大的混合建模;孔隙网络整合法能够实现多个连续尺度的建模,模型储存空间小且数值模拟效率高,但可研究的物理属性受限。此外,数字岩石工作流程还存在如何精确提取矿物、如何确定适当的代表性体积元大小等共性问题。笔者认为下一步探索方向为:利用实验数据优化建模,按需研究物理属性建模及结合均化等效理论建模,以早日形成具体的应用体系,支撑实际测井解释及油气藏开发。 展开更多
关键词 数字岩石 多尺度 三维随机重建 图像融合 孔隙网络模型
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部