期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ranking important nodes in complex networks by simulated annealing 被引量:3
1
作者 Yu Sun Pei-Yang Yao +2 位作者 Lu-Jun Wan Jian Shen Yun Zhong 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期42-47,共6页
In this paper, based on simulated annealing a new method to rank important nodes in complex networks is presented.First, the concept of an importance sequence(IS) to describe the relative importance of nodes in comp... In this paper, based on simulated annealing a new method to rank important nodes in complex networks is presented.First, the concept of an importance sequence(IS) to describe the relative importance of nodes in complex networks is defined. Then, a measure used to evaluate the reasonability of an IS is designed. By comparing an IS and the measure of its reasonability to a state of complex networks and the energy of the state, respectively, the method finds the ground state of complex networks by simulated annealing. In other words, the method can construct a most reasonable IS. The results of experiments on real and artificial networks show that this ranking method not only is effective but also can be applied to different kinds of complex networks. 展开更多
关键词 complex networks node importance ranking method simulated annealing
下载PDF
ComRank: Joint Weight Technique for the Identification of Influential Communities 被引量:1
2
作者 Muhammad Azam Zia Zhongbao Zhang +2 位作者 Ximing Li Haseeb Ahmad Sen Su 《China Communications》 SCIE CSCD 2017年第4期101-110,共10页
Recently, the community analysis has seen enormous research advancements in the field of social networks. A large amount of the current studies put forward different models and algorithms about most influential people... Recently, the community analysis has seen enormous research advancements in the field of social networks. A large amount of the current studies put forward different models and algorithms about most influential people. However, there is little work to shed light on how to rank communities while considering their levels that are determined by the quality of their published contents. In this paper, we propose solution for measuring the influence of communities and ranking them by considering joint weight composed of internal and external influence of communities. To address this issue, we design a novel algorithm called Com Rank: a modification of Page Rank, which considers the joint weight in order to identify impact of each community and ranking them. We use real-world data trace in citation network and perform extensive experiments to evaluate our proposed algorithm. The comparative results depict significant improvements by our algorithm in community ranking due to the inclusion of proposed weighting feature. 展开更多
关键词 online social networks community rank citation network Page Rank influence
下载PDF
Exploiting global information in complex network repair processes 被引量:1
3
作者 Tianyu WANG Jun ZHANG Sebastian WANDELT 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1086-1100,共15页
Robustness of complex networks has been studied for decades,with a particular focus on network attack.Research on network repair,on the other hand,has been conducted only very lately,given the even higher complexity a... Robustness of complex networks has been studied for decades,with a particular focus on network attack.Research on network repair,on the other hand,has been conducted only very lately,given the even higher complexity and absence of an effective evaluation metric.A recently proposed network repair strategy is self-healing,which aims to repair networks for larger components at a low cost only with local information.In this paper,we discuss the effectiveness and efficiency of self-healing,which limits network repair to be a multi-objective optimization problem and makes it difficult to measure its optimality.This leads us to a new network repair evaluation metric.Since the time complexity of the computation is very high,we devise a greedy ranking strategy.Evaluations on both real-world and random networks show the effectiveness of our new metric and repair strategy.Our study contributes to optimal network repair algorithms and provides a gold standard for future studies on network repair. 展开更多
关键词 Complex network Global information Greedy ranking Optimality Self-healing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部