Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM...Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.展开更多
In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sou...In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sources of information, including line current, line voltage, zero sequence current and voltage, and quintic harmonic wave component. This method is testified through the simulation of Matlab. Simulation results show that the precision and reliability of the detection has been greatly increased.展开更多
This paper mainly is study on power system working state with neutral point different grounded methods, when the power system is normal working and the single-phase grounding. And further analysis of the different ope...This paper mainly is study on power system working state with neutral point different grounded methods, when the power system is normal working and the single-phase grounding. And further analysis of the different operating modes of voltage and current relationships, expounds the different operation occasions and characteristics.展开更多
Based on a lot of measurement and analysis,this paper find that the unbalanced nature of 35 kV grids due to unsymmetrical capacitance values gives difficulty in neutral point operation in mountainous area.Improving co...Based on a lot of measurement and analysis,this paper find that the unbalanced nature of 35 kV grids due to unsymmetrical capacitance values gives difficulty in neutral point operation in mountainous area.Improving compensation of Petersen coil can rectify imbalance of voltage but bring up new problem that Petersen coil can not extinguish grounding arc effectively in fault.To put down contradiction mentioned above,this paper proposes a combination operation for neutral point of 35 kV grids as neutral point insulated in routine operation and grounding through Petersen coil in fault,then EMTP simulation is carried out.Simulation indicates that new neutral operation method can improve lightning withstand level and decrease trip-out rate of grids.展开更多
The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active swit...The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.展开更多
The presence of an integrator in a reference model of a rotor flux-based model reference adaptive system(RF-MRAS)and non-linearity of the inverter in the output voltage degrade the speed response of the sensorless ope...The presence of an integrator in a reference model of a rotor flux-based model reference adaptive system(RF-MRAS)and non-linearity of the inverter in the output voltage degrade the speed response of the sensorless operation of the electric drive system in terms of DC drift,initial value issues,and inaccurate voltage acquisition.To improve the speed response,a compensating voltage component is supplemented by an amending integrator.The compensating voltage is a coalition of drift and offset voltages,and reduces DC drift and initial value issues.During low-speed operation,inaccurate voltage acquisition distorts the stator voltage critically,and it becomes considerable when the stator voltage of the machine is low.Implementing a three-level neutral point clamped inverter in speed-sensorless decoupled control of an induction motor improves the performance of the drive with superior quality of inverter output voltage.Further,the performance of the induction motor drive is improved by replacing the proportional-integral(PI)controller in the adaption mechanism of RF-MRAS with an adaptive neuro-fuzzy inference system(ANFIS)controller.A prototype model of the three-level neutral point clamped inverter(3L-NPC)-fed induction motor drive is fabricated in a laboratory,and its performance for a RF-MRAS,modified RFMRAS,and modified RFMRAS using ANFIS are compared using different benchmark tests.展开更多
An analytical evaluation method for output waveform quality of space vector pulse width modulation(PWM)strategies applied in neutral⁃point⁃clamped three⁃level converter(3L⁃NPC)is proposed in this paper.Low frequency e...An analytical evaluation method for output waveform quality of space vector pulse width modulation(PWM)strategies applied in neutral⁃point⁃clamped three⁃level converter(3L⁃NPC)is proposed in this paper.Low frequency error caused by neutral point voltage ripple and high frequency error introduced by space vector synthesis were both taken into account,and the unified error model of output current ripple was established.By taking continuous and discontinuous modulation strategies as examples,the unified error model was validated through Fourier analysis of the experimental results.The proposed evaluation method will be helpful for the switching sequence optimization and the modulation strategy selection.展开更多
This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage ve...This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage vectors. The new modulation approach shows superior performance for harmonic voltage and balancing control of neutral-point potential compared to the popular eight-stage centered SVPWM. It realizes suppression of inverter neutral-point potential variation by accurately modifying redundant factor of small vectors pairs, only requiring information of DC-link capacitor voltages and three-phase load currents. This is convenient to apply and is compatible of digital computer realization. Feasibility of the proposed control approach is verified by simulation and experimental results.展开更多
This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such a...This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 51977099。
文摘Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.
文摘In neutral point indirectly grounded systems, phase-to-ground fault is putting new demands on fault diagnosis technology. Information fusion is applied to detect the phase-to-ground fault, which integrates several sources of information, including line current, line voltage, zero sequence current and voltage, and quintic harmonic wave component. This method is testified through the simulation of Matlab. Simulation results show that the precision and reliability of the detection has been greatly increased.
文摘This paper mainly is study on power system working state with neutral point different grounded methods, when the power system is normal working and the single-phase grounding. And further analysis of the different operating modes of voltage and current relationships, expounds the different operation occasions and characteristics.
基金Project Supported by Natural Science Foundation of CQ CSTC ( 2005BA6021 ).
文摘Based on a lot of measurement and analysis,this paper find that the unbalanced nature of 35 kV grids due to unsymmetrical capacitance values gives difficulty in neutral point operation in mountainous area.Improving compensation of Petersen coil can rectify imbalance of voltage but bring up new problem that Petersen coil can not extinguish grounding arc effectively in fault.To put down contradiction mentioned above,this paper proposes a combination operation for neutral point of 35 kV grids as neutral point insulated in routine operation and grounding through Petersen coil in fault,then EMTP simulation is carried out.Simulation indicates that new neutral operation method can improve lightning withstand level and decrease trip-out rate of grids.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4201602)the National Natural Science Foundation of China(Grant No.52002409).
文摘The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.
文摘The presence of an integrator in a reference model of a rotor flux-based model reference adaptive system(RF-MRAS)and non-linearity of the inverter in the output voltage degrade the speed response of the sensorless operation of the electric drive system in terms of DC drift,initial value issues,and inaccurate voltage acquisition.To improve the speed response,a compensating voltage component is supplemented by an amending integrator.The compensating voltage is a coalition of drift and offset voltages,and reduces DC drift and initial value issues.During low-speed operation,inaccurate voltage acquisition distorts the stator voltage critically,and it becomes considerable when the stator voltage of the machine is low.Implementing a three-level neutral point clamped inverter in speed-sensorless decoupled control of an induction motor improves the performance of the drive with superior quality of inverter output voltage.Further,the performance of the induction motor drive is improved by replacing the proportional-integral(PI)controller in the adaption mechanism of RF-MRAS with an adaptive neuro-fuzzy inference system(ANFIS)controller.A prototype model of the three-level neutral point clamped inverter(3L-NPC)-fed induction motor drive is fabricated in a laboratory,and its performance for a RF-MRAS,modified RFMRAS,and modified RFMRAS using ANFIS are compared using different benchmark tests.
基金National Natural Science Foundation of China(Grant Nos.51807140 and 51690183).
文摘An analytical evaluation method for output waveform quality of space vector pulse width modulation(PWM)strategies applied in neutral⁃point⁃clamped three⁃level converter(3L⁃NPC)is proposed in this paper.Low frequency error caused by neutral point voltage ripple and high frequency error introduced by space vector synthesis were both taken into account,and the unified error model of output current ripple was established.By taking continuous and discontinuous modulation strategies as examples,the unified error model was validated through Fourier analysis of the experimental results.The proposed evaluation method will be helpful for the switching sequence optimization and the modulation strategy selection.
文摘This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage vectors. The new modulation approach shows superior performance for harmonic voltage and balancing control of neutral-point potential compared to the popular eight-stage centered SVPWM. It realizes suppression of inverter neutral-point potential variation by accurately modifying redundant factor of small vectors pairs, only requiring information of DC-link capacitor voltages and three-phase load currents. This is convenient to apply and is compatible of digital computer realization. Feasibility of the proposed control approach is verified by simulation and experimental results.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.