Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso...Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.展开更多
Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neur...Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies.展开更多
Dear Editor,Three dimensional(3D)bioprinted extracellular matrix(ECM)can be used to provide both biochemical and biophysical cues to direct mesenchymal stem cells(MSCs)differentiation,and then differentiated cells wer...Dear Editor,Three dimensional(3D)bioprinted extracellular matrix(ECM)can be used to provide both biochemical and biophysical cues to direct mesenchymal stem cells(MSCs)differentiation,and then differentiated cells were isolated for implantation in vivo using surgical procedures.However,the reduced cell activity after cell isolation from 3D constructs and low cell retention in injured sites limit its application[1].Methacrylated gelatin(GelMA)hydrogel has the advantage of fast crosslinking,which could resemble complex architectures of tissue construct in vivo[2].Here,we adopted a noninvasive bioprinting procedure to imitate the regenerative microenvironment that could simultaneously direct the sweat gland(SG)and vascular differentiation from MSCs and ultimately promote the replacement of glandular tissue in situ(Fig.1a).展开更多
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerati...Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.展开更多
In recent years,there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells.Biomaterials,in particular,have garnered significant inter...In recent years,there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells.Biomaterials,in particular,have garnered significant interest for their potential to serve as natural scaffolds for cells.In this editorial,we provide commentary on the study by Wang et al,in a recently published issue of World J Stem Cells,which investigates the use of a decellularized xenogeneic extracellular matrix(ECM)derived from antler stem cells for repairing osteochondral defects in rat knee joints.Our focus lies specifically on the crucial role of biological scaffolds as a strategy for augmenting stem cell potential and regenerative capabilities,thanks to the establishment of a favorable microenvironment(niche).Stem cell differen-tiation heavily depends on exposure to intrinsic properties of the ECM,including its chemical and protein composition,as well as the mechanical forces it can generate.Collectively,these physicochemical cues contribute to a bio-instructive signaling environment that offers tissue-specific guidance for achieving effective repair and regeneration.The interest in mechanobiology,often conceptualized as a form of“structural memory”,is steadily gaining more validation and momen-tum,especially in light of findings such as these.展开更多
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
To investigate the dominant species and interspecific association in the phytoplankton community of the Feiyun River basin in Zhejiang Province,East China,the main stream and the Shanxi Zhaoshandu Reservoir in the dow...To investigate the dominant species and interspecific association in the phytoplankton community of the Feiyun River basin in Zhejiang Province,East China,the main stream and the Shanxi Zhaoshandu Reservoir in the downstream were chosen as the study area,for which 22 sampling sites were designated.Sampling was conducted in September 2021,January,May,and July 2022.Phytoplankton species were identified from both quantitative samples and in-vivo observations.Phytoplankton was quantified by direct counting.Results show that there were 98 species belonging to 6 phyla and 78 genera.In addition,to clarify the niches of the dominant phytoplankton species and their interspecific association,the dominance index was calculated,and a comprehensive analysis was conducted including niche width,niche overlap value,ecological response rate,overall association,chi-square test,and the stability.The phytoplankton community exhibited characteristics of a Cyanobacteria-Chlorophyta-Diatom type community,showing higher diversity in spring and lower diversity in summer.Among 11 dominants phytoplankton species from 3 phyla,both frequency and dominance degree varied seasonally,of which Microcystis sp.was the dominant species in Spring,Autumn,and Winter.The niche widths of the dominant species ranged from 0.234 to 0.933,and were categorized into three groups.The niche overlap values of the 11 dominant species ranged from 0.359 to 0.959,exhibiting significant seasonal differences-highest in winter followed by autumn,spring,and summer in turn.The overall correlation among dominant species in all four seasons revealed a non-significant negative association,resulting in an unstable community structure.A significant portion(84.2%)of species pairs displayed positive associations,suggesting a successional pattern where Diatoms dominated while other dominant species shared resources and space.Despite this pattern,stability measurements indicated that the dominant species community remained unstable.Therefore,careful monitoring is recommended for potential water environment issues arising from abnormal proliferation of dominant species in the watershed during winter.This research built a theoretical foundation with a data support to the early warning of eutrophication and provided a reference for water resources management in similar watersheds along the eastern coast of China.展开更多
Tumormetastasis is responsible for 90%of cancer-associated deaths,and its early detection may decrease the likelihood of mortality.Studies have demonstrated that metastasis results from the interaction between“seeds...Tumormetastasis is responsible for 90%of cancer-associated deaths,and its early detection may decrease the likelihood of mortality.Studies have demonstrated that metastasis results from the interaction between“seeds”(tumor cells)and“soil”(pre-metastatic niche,PMN).As the first and most abundant immune cells to be recruited to PMN,neutrophils play a key role in the ultimate formation of metastatic foci through mechanisms such as supporting tumor cell growth,promoting angiogenesis,and shaping an immune-suppressive microenvironment.In this study,two distinct types of sialic acid(SA)-modified liposomes were prepared to target and regulate pro-metastatic neutrophils through the l-selectin receptor.One of these liposomes,named ICG@SAL,was used to encapsulate indocyanine green(ICG)and was specifically designed for the early detection of cancer metastasis.The other liposome,referred to as ABE/Cur@SAL,co-loaded abemaciclib(ABE)and curcumin(Cur),with the intention of suppressing the progression of metastatic tumor.Fluorescence imaging results from the mouse spontaneous metastasis model indicated that ICG@SAL demonstrated faster targeting and stronger accumulation in the metastatic organs than unmodified ICG liposomes(ICG@CL).This suggested that ICG@SAL could detect tumor metastasis at an early stage.The therapy with co-loaded liposomes in the mouse experimental lung metastasis model indicated that ABE/Cur@SAL could inhibit regulatory T(Treg)cell proliferation,enhance effector T cell activity and reduce tumorigenic factor release,implying that ABE/Cur@SAL could inhibit tumor metastasis.Overall,our work provided a sensitive and convenient approach to early diagnosis and treatment of tumor metastasis.ICG@SAL could be employed for the early detection of tumor metastasis,while ABE/Cur@SAL could be used to inhibit the development of tumor metastasis when early metastasis was identified.展开更多
Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and eva...Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.展开更多
Temperature is a key factor that shapes the distribution of organisms.Having knowledge about how species respond to temperature is relevant to devise strategies for addressing the impacts of climate change.Aquatic ins...Temperature is a key factor that shapes the distribution of organisms.Having knowledge about how species respond to temperature is relevant to devise strategies for addressing the impacts of climate change.Aquatic insects are particularly vulnerable to climate change,yet there is still much to learn about their ecology and distribution.In the Yungas ecoregion of Northwestern Argentina,cold-and warm-adapted species of the orders Ephemeroptera,Plecoptera,and Trichoptera(EPT)are segregated by elevation.We modeled the ecological niche of South American EPT species in this region using available data and projected their potential distribution in geographic space.Species were grouped based on their ecogeographic similarity,and we analyzed their replacement pattern along elevation gradients,focusing on the ecotone where opposing thermal preferences converge.Along this interface,we identified critical points where the combined incidence of cold and warm assemblages maximizes,indicating a significant transition zone.We found that the Montane Cloud Forest holds the interface,with a particularly greater suitability at its lower boundary.The main axis of the interface runs in a N-S direction and falls between 14°C-16°C mean annual isotherms.The probability of a particular location within a basin being classified as part of the interface increases as Kira’s warmth index approaches a score around 150.Understanding the interface is critical for defining the thermal limits of species distribution and designing biomonitoring programs.Changes in the location of thermal constants related to mountainous ecotones may cause vertical displacement of aquatic insects and vegetation communities.We have recognized significant temperature thresholds that serve as indicators of suitability for the interface.As global warming is anticipated to shift these indicators,we suggest using them to monitor the imprints of climate change on mountain ecosystems.展开更多
Post-disaster recovery and reconstruction provide an effective way to reduce the disaster vulnerability of, and promote leapfrog development in, an affected area. To date, studies that have used administrative boundar...Post-disaster recovery and reconstruction provide an effective way to reduce the disaster vulnerability of, and promote leapfrog development in, an affected area. To date, studies that have used administrative boundaries to investigate the reconstruction of settlement space have not been able to clearly define the real boundaries of land use changes or quantify the degree of response to the ‘Build-Back-Better’ initiative, and have lacked any consideration of the fourth reconstruction stage–development period(10 years). This study constructed a mountain settlement niche and analyzed the characteristics, spatial reconstruction, and drivers of rural settlements during 2009–2019 in the upper reaches of the Minjiang River, southwest China. The results showed the following:(1) Natural factors were the basis for the formation and development of mountain settlement niches. The scale of the settlement niche and its land use structure depended on the physical geography features and the ethnic farming and grazing traditions. The settlement niche provided a realistic boundary for the spatial reconstruction.(2) The layout of residential land around cropland was the common feature of the mountain settlement niche. Of all the land use types, the roads and rural residential lands showed the most change over the 10 years;13,860 residential patches increased in size and 4,742 patches were abandoned.(3) The area of orchards, planted to reconstruct the economy in the mountains, increased by nearly 2.5 times.(4) Collapses, landslides, and debris flow disasters and the ecological red line influenced the spatial reconstruction. While the main focus of post-disaster recovery is spatial reconstruction, initiatives should include economic and spiritual recovery, and should also achieve sustainable development of the region.展开更多
Phylogenetic niche conservatism posits that species tend to retain ancestral ecological traits and distributions,which has been broadly tested for lineages originating in tropical climates but has been rarely tested f...Phylogenetic niche conservatism posits that species tend to retain ancestral ecological traits and distributions,which has been broadly tested for lineages originating in tropical climates but has been rarely tested for lineages that originated and diversified in temperate climates.Liverworts are thought to originate in temperate climates.Mean lineage age reflects evolutionary history of biological communities.Here,using regional liverwort floras across a long latitudinal gradient from tropical to arctic climates in North America,we test the age-component of the temperate niche conservatism hypothesis.Mean genus age(MGA)was estimated for each of 76 regional floras of liverworts.We related MGA to climatic variables for North America as a whole and for its eastern and western parts separately,and used variation partitioning analysis to assess the relative importance of temperature-versus precipitationrelated variables and of climate extremes versus seasonality on MGA.We found that older genera of liverworts tend to concentrate in humid regions of intermediate temperatures in the range of 10℃-20℃,from which liverworts have adapted to and diversified into more arid,colder,and hotter regions,supporting the temperate niche conservatism hypothesis.We also found that across North America the MGA of liverwort assemblages is more strongly affected by precipitation-related variables than by temperature-related variables,and is more strongly affected by climate extremes than by climate seasonality.Geographic patterns of the MGA of liverworts are consistent with the temperate niche conservatism hypothesis,rather than the tropical niche conservatism hypothesis,the latter of which is broadly supported by angiosperms.展开更多
Leaf nitrogen(N)and phosphorus(P)levels provide critical strategies for plant adaptions to changing environments.However,it is unclear whether leaf N and P levels of different plant functional groups(e.g.,monocots and...Leaf nitrogen(N)and phosphorus(P)levels provide critical strategies for plant adaptions to changing environments.However,it is unclear whether leaf N and P levels of different plant functional groups(e.g.,monocots and dicots)respond to environmental gradients in a generalizable pattern.Here,we used a global database of leaf N and P to determine whether monocots and dicots might have evolved contrasting strategies to balance N and P in response to changes in climate and soil nutrient availability.Specifically,we characterized global patterns of leaf N,P and N/P ratio in monocots and dicots,and explored the sensitivity of stoichiometry to environment factors in these plants.Our results indicate that leaf N and P levels responded to environmental factors differently in monocots than in dicots.In dicots,variations of leaf N,P and N/P ratio were significantly correlated to temperature and precipitation.In monocots,leaf N/P ratio was not significantly affected by temperature or precipitation.This indicates that leaf N,P and N/P ratio are less sensitive to environmental dynamics in monocots.We also found that in both monocots and dicots N/P ratios are associated with the availability of soil total P rather than soil total N,indicating that P limitation on plant growth is pervasive globally.In addition,there were significant phylogenetic signals for leaf N(λ=0.65),P(λ=0.57)and N/P ratio(λ=0.46)in dicots,however,only significant phylogenetic signals for leaf P in monocots.Taken together,our findings indicate that monocots exhibit a“conservative”strategy(high stoichiometric homeostasis and weak phylogenetic signals in stoichiometry)to maintain their growth in stressful conditions with lower water and soil nutrients.In contrast,dicots exhibit lower stoichiometric homeostasis in changing environments because of their wide climate-soil niches and significant phylogenetic signals in stoichiometry.展开更多
Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical...Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset.展开更多
Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lackin...Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.展开更多
Mountains are paramount for exploring biodiversity patterns due to the mosaic of topographies and climates encompassed over short distances.Biodiversity research has traditionally focused on taxonomic diversity when i...Mountains are paramount for exploring biodiversity patterns due to the mosaic of topographies and climates encompassed over short distances.Biodiversity research has traditionally focused on taxonomic diversity when investigating changes along elevational gradients,but other facets should be considered.For first time,we simultaneously assessed elevational trends in taxonomic,functional,and phylogenetic diversity of woody plants in Andean tropical montane forests and explored their underlying ecological and evolutionary causes.This investigation covered four transects(traversing ca.2200 m a.s.l.) encompassing 114 plots of 0.1 ha across a broad latitudinal range(ca.10°).Using Hill numbers to quantify abundance-based diversity among 37,869 individuals we observed a consistent decrease in taxonomic,functional,and phylogenetic diversity as elevation increased,although the decrease was less pronounced for higher Hill orders.The exception was a slight increase in phylogenetic diversity when dominant species were over-weighted.The decrease in taxonomic and functional diversity might be attributed to an environmental filtering process towards highlands,where the increasingly harsher conditions exclude species and functional strategies.Besides,the differences in steepness decrease between Hill orders suggest that rare species disproportionately contribute to functional diversity.For phylogenetic diversity the shifting elevational trend between Hill orders indicates a greater than previously considered influence in central Andean highlands of tropical lowlands originated species with strong niche conservatism relative to distantly related temperate lineages.This could be explained by a decreasing presence and abundance of temperate,extratropical taxa towards the central Andes relative to northern or southern Andes,where they are more prevalent.展开更多
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of ce...China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations.One of these relict lineages is Dipteronia,an oligotypic tree genus with a fossil record extending to the Paleocene.Here,we investigated the genetic variability,demographic dynamics and diversification patterns of the two currently recognized Dipteronia species(Dipteronia sinensis and D.dyeriana).Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions,two single copy nuclear genes and 15 simple sequence repeat loci.The genetic study was combined with niche comparison analyses on the environmental space,ecological niche modeling,and landscape connectivity analysis.We found that the two Dipteronia species have highly diverged both in genetic and ecological terms.Despite the incipient speciation processes that can be observed in D.sinensis,the occurrence of long-term stable refugia and,particularly,a dispersal corridor along Daba Shan-west Qinling,likely ensured its genetic and ecological integrity to date.Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic,but also provide insight into how Arcto-Tertiary relict plants in East Asia survived,evolved,and diversified.展开更多
Changing climate will jeopardize biodiversity,particularly the geographic distribution of endemic species.One such species is the Javan Hawk-Eagle(JHE,Nisaetus bartelsi),a charismatic raptor found only on Java Island,...Changing climate will jeopardize biodiversity,particularly the geographic distribution of endemic species.One such species is the Javan Hawk-Eagle(JHE,Nisaetus bartelsi),a charismatic raptor found only on Java Island,Indonesia.Thus,it is crucial to develop an appropriate conservation strategy to preserve the species.Ecological niche modeling is considered a valuable tool for designing conservation plans for the JHE.We provide an ecological niche modeling approach and transfer its model to future climate scenarios for the JHE.We utilize various machine learning algorithms under sustainability and business-as-usual(BAU)scenarios for 2050.Additionally,we investigate the conservation vulnerability of the JHE,capturing multifaceted pressures on the species from climate dissimilarities and human disturbance variables.Our study reveals that the ensemble model performs exceptionally well,with temperature emerging as the most critical factor affecting the JHE distribution.This finding indicates that climate change will have a significant impact on the JHE species.Our results suggest that the JHE distribution will likely decrease by 28.41%and 40.16%from the current JHE distribution under sustainability and BAU scenarios,respectively.Furthermore,our study reveals high-potential refugia for future JHE,covering 7,596 km^(2)(61%)under the sustainability scenario and only 4,403 km^(2)(35%)under the BAU scenario.Therefore,effective management and planning,including habitat restoration,refugia preservation,habitat connectivity,and local community inclusivity,should be well-managed to achieve JHE conservation targets.展开更多
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in...The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.展开更多
Proliferation and differentiation of intestinal stem cell(ISC)to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation.However,when this disordered pro...Proliferation and differentiation of intestinal stem cell(ISC)to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation.However,when this disordered proliferation continues,it induces the ISC to enter a cancerous state.The gut microbiota on the free surface of the gut mucosal barrier is able to interact with ISC on a sustained basis.Micro-biota metabolites are able to regulate the proliferation of gut stem and progenitor cells through transcription factors,while in steady state,differentiated colono-cytes are able to break down such metabolites,thereby protecting stem cells at the gut crypt.In the future,the gut flora and its metabolites mediating the regulation of ISC differentiation will be a potential treatment for enteropathies.展开更多
基金supported by grants from the Department of Science and Technology of Sichuan Province,Nos.2021ZYD0093(to LY),2022YFS0597(to LY),2021YJ0480(to YT),and 2022ZYD0076(to JY)。
文摘Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
基金supported by the SIAT Innovation Program for Excellent Young Researchers,No.E1G0241001(to XZ)。
文摘Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies.
基金supported by the Science Fund for National Defense Distinguished Young Scholars(2022-JCJQ-ZQ-016)the Key Basic Research Projects of the Foundation Strengthening Plan(2022-JCJQZD-096-00)+2 种基金the National Key Research and Development Program of China(2022YFA1104604)the National Natural Science Foundation of China(32000969)the Key Support Program for Growth Factor Research(SZYZ-TR-03).
文摘Dear Editor,Three dimensional(3D)bioprinted extracellular matrix(ECM)can be used to provide both biochemical and biophysical cues to direct mesenchymal stem cells(MSCs)differentiation,and then differentiated cells were isolated for implantation in vivo using surgical procedures.However,the reduced cell activity after cell isolation from 3D constructs and low cell retention in injured sites limit its application[1].Methacrylated gelatin(GelMA)hydrogel has the advantage of fast crosslinking,which could resemble complex architectures of tissue construct in vivo[2].Here,we adopted a noninvasive bioprinting procedure to imitate the regenerative microenvironment that could simultaneously direct the sweat gland(SG)and vascular differentiation from MSCs and ultimately promote the replacement of glandular tissue in situ(Fig.1a).
基金supported by the National Natural Science Foundation of China,No.82171336(to XX)。
文摘Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
文摘In recent years,there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells.Biomaterials,in particular,have garnered significant interest for their potential to serve as natural scaffolds for cells.In this editorial,we provide commentary on the study by Wang et al,in a recently published issue of World J Stem Cells,which investigates the use of a decellularized xenogeneic extracellular matrix(ECM)derived from antler stem cells for repairing osteochondral defects in rat knee joints.Our focus lies specifically on the crucial role of biological scaffolds as a strategy for augmenting stem cell potential and regenerative capabilities,thanks to the establishment of a favorable microenvironment(niche).Stem cell differen-tiation heavily depends on exposure to intrinsic properties of the ECM,including its chemical and protein composition,as well as the mechanical forces it can generate.Collectively,these physicochemical cues contribute to a bio-instructive signaling environment that offers tissue-specific guidance for achieving effective repair and regeneration.The interest in mechanobiology,often conceptualized as a form of“structural memory”,is steadily gaining more validation and momen-tum,especially in light of findings such as these.
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
基金Supported by the National Key Scientific Research Project(No.2018YFC1508200)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX 23_0714)+1 种基金the China Scholarship Council(No.202206710066)the Construction Project of Wenzhou Hydrology High quality Development Pilot Zone(No.WZSW-GZLFZXXQ-202105)。
文摘To investigate the dominant species and interspecific association in the phytoplankton community of the Feiyun River basin in Zhejiang Province,East China,the main stream and the Shanxi Zhaoshandu Reservoir in the downstream were chosen as the study area,for which 22 sampling sites were designated.Sampling was conducted in September 2021,January,May,and July 2022.Phytoplankton species were identified from both quantitative samples and in-vivo observations.Phytoplankton was quantified by direct counting.Results show that there were 98 species belonging to 6 phyla and 78 genera.In addition,to clarify the niches of the dominant phytoplankton species and their interspecific association,the dominance index was calculated,and a comprehensive analysis was conducted including niche width,niche overlap value,ecological response rate,overall association,chi-square test,and the stability.The phytoplankton community exhibited characteristics of a Cyanobacteria-Chlorophyta-Diatom type community,showing higher diversity in spring and lower diversity in summer.Among 11 dominants phytoplankton species from 3 phyla,both frequency and dominance degree varied seasonally,of which Microcystis sp.was the dominant species in Spring,Autumn,and Winter.The niche widths of the dominant species ranged from 0.234 to 0.933,and were categorized into three groups.The niche overlap values of the 11 dominant species ranged from 0.359 to 0.959,exhibiting significant seasonal differences-highest in winter followed by autumn,spring,and summer in turn.The overall correlation among dominant species in all four seasons revealed a non-significant negative association,resulting in an unstable community structure.A significant portion(84.2%)of species pairs displayed positive associations,suggesting a successional pattern where Diatoms dominated while other dominant species shared resources and space.Despite this pattern,stability measurements indicated that the dominant species community remained unstable.Therefore,careful monitoring is recommended for potential water environment issues arising from abnormal proliferation of dominant species in the watershed during winter.This research built a theoretical foundation with a data support to the early warning of eutrophication and provided a reference for water resources management in similar watersheds along the eastern coast of China.
基金This work was supported by the Doctoral Start-up Foundation of Liaoning Province of China[Grant Number 2023-BS-086]the Fundemental Research Funds for Public Universitiesin Liaoning(LJKJT202402)+1 种基金the Youth Project of Liaoning Provincial Department of Education(JYTQN2023188)the Youth Scientific Research Fund Project of Liaoning University.
文摘Tumormetastasis is responsible for 90%of cancer-associated deaths,and its early detection may decrease the likelihood of mortality.Studies have demonstrated that metastasis results from the interaction between“seeds”(tumor cells)and“soil”(pre-metastatic niche,PMN).As the first and most abundant immune cells to be recruited to PMN,neutrophils play a key role in the ultimate formation of metastatic foci through mechanisms such as supporting tumor cell growth,promoting angiogenesis,and shaping an immune-suppressive microenvironment.In this study,two distinct types of sialic acid(SA)-modified liposomes were prepared to target and regulate pro-metastatic neutrophils through the l-selectin receptor.One of these liposomes,named ICG@SAL,was used to encapsulate indocyanine green(ICG)and was specifically designed for the early detection of cancer metastasis.The other liposome,referred to as ABE/Cur@SAL,co-loaded abemaciclib(ABE)and curcumin(Cur),with the intention of suppressing the progression of metastatic tumor.Fluorescence imaging results from the mouse spontaneous metastasis model indicated that ICG@SAL demonstrated faster targeting and stronger accumulation in the metastatic organs than unmodified ICG liposomes(ICG@CL).This suggested that ICG@SAL could detect tumor metastasis at an early stage.The therapy with co-loaded liposomes in the mouse experimental lung metastasis model indicated that ABE/Cur@SAL could inhibit regulatory T(Treg)cell proliferation,enhance effector T cell activity and reduce tumorigenic factor release,implying that ABE/Cur@SAL could inhibit tumor metastasis.Overall,our work provided a sensitive and convenient approach to early diagnosis and treatment of tumor metastasis.ICG@SAL could be employed for the early detection of tumor metastasis,while ABE/Cur@SAL could be used to inhibit the development of tumor metastasis when early metastasis was identified.
基金Supported by the Laoshan Laboratory(Nos.LSKJ 202203700,LSKJ 202203704,LSKJ 202204005)the National Natural Science Foundation of China(NSFC)(Nos.42076166,42130411)the NSFC Ship Time Sharing Project(No.42149901)。
文摘Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.
文摘Temperature is a key factor that shapes the distribution of organisms.Having knowledge about how species respond to temperature is relevant to devise strategies for addressing the impacts of climate change.Aquatic insects are particularly vulnerable to climate change,yet there is still much to learn about their ecology and distribution.In the Yungas ecoregion of Northwestern Argentina,cold-and warm-adapted species of the orders Ephemeroptera,Plecoptera,and Trichoptera(EPT)are segregated by elevation.We modeled the ecological niche of South American EPT species in this region using available data and projected their potential distribution in geographic space.Species were grouped based on their ecogeographic similarity,and we analyzed their replacement pattern along elevation gradients,focusing on the ecotone where opposing thermal preferences converge.Along this interface,we identified critical points where the combined incidence of cold and warm assemblages maximizes,indicating a significant transition zone.We found that the Montane Cloud Forest holds the interface,with a particularly greater suitability at its lower boundary.The main axis of the interface runs in a N-S direction and falls between 14°C-16°C mean annual isotherms.The probability of a particular location within a basin being classified as part of the interface increases as Kira’s warmth index approaches a score around 150.Understanding the interface is critical for defining the thermal limits of species distribution and designing biomonitoring programs.Changes in the location of thermal constants related to mountainous ecotones may cause vertical displacement of aquatic insects and vegetation communities.We have recognized significant temperature thresholds that serve as indicators of suitability for the interface.As global warming is anticipated to shift these indicators,we suggest using them to monitor the imprints of climate change on mountain ecosystems.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42171085)The Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No.2019QZKK0307)。
文摘Post-disaster recovery and reconstruction provide an effective way to reduce the disaster vulnerability of, and promote leapfrog development in, an affected area. To date, studies that have used administrative boundaries to investigate the reconstruction of settlement space have not been able to clearly define the real boundaries of land use changes or quantify the degree of response to the ‘Build-Back-Better’ initiative, and have lacked any consideration of the fourth reconstruction stage–development period(10 years). This study constructed a mountain settlement niche and analyzed the characteristics, spatial reconstruction, and drivers of rural settlements during 2009–2019 in the upper reaches of the Minjiang River, southwest China. The results showed the following:(1) Natural factors were the basis for the formation and development of mountain settlement niches. The scale of the settlement niche and its land use structure depended on the physical geography features and the ethnic farming and grazing traditions. The settlement niche provided a realistic boundary for the spatial reconstruction.(2) The layout of residential land around cropland was the common feature of the mountain settlement niche. Of all the land use types, the roads and rural residential lands showed the most change over the 10 years;13,860 residential patches increased in size and 4,742 patches were abandoned.(3) The area of orchards, planted to reconstruct the economy in the mountains, increased by nearly 2.5 times.(4) Collapses, landslides, and debris flow disasters and the ecological red line influenced the spatial reconstruction. While the main focus of post-disaster recovery is spatial reconstruction, initiatives should include economic and spiritual recovery, and should also achieve sustainable development of the region.
文摘Phylogenetic niche conservatism posits that species tend to retain ancestral ecological traits and distributions,which has been broadly tested for lineages originating in tropical climates but has been rarely tested for lineages that originated and diversified in temperate climates.Liverworts are thought to originate in temperate climates.Mean lineage age reflects evolutionary history of biological communities.Here,using regional liverwort floras across a long latitudinal gradient from tropical to arctic climates in North America,we test the age-component of the temperate niche conservatism hypothesis.Mean genus age(MGA)was estimated for each of 76 regional floras of liverworts.We related MGA to climatic variables for North America as a whole and for its eastern and western parts separately,and used variation partitioning analysis to assess the relative importance of temperature-versus precipitationrelated variables and of climate extremes versus seasonality on MGA.We found that older genera of liverworts tend to concentrate in humid regions of intermediate temperatures in the range of 10℃-20℃,from which liverworts have adapted to and diversified into more arid,colder,and hotter regions,supporting the temperate niche conservatism hypothesis.We also found that across North America the MGA of liverwort assemblages is more strongly affected by precipitation-related variables than by temperature-related variables,and is more strongly affected by climate extremes than by climate seasonality.Geographic patterns of the MGA of liverworts are consistent with the temperate niche conservatism hypothesis,rather than the tropical niche conservatism hypothesis,the latter of which is broadly supported by angiosperms.
基金supported by the National Science Foundation of China(Grant No.32271774,42301071)the China Postdoctoral Science Foundation(Grant No.2023M743633).
文摘Leaf nitrogen(N)and phosphorus(P)levels provide critical strategies for plant adaptions to changing environments.However,it is unclear whether leaf N and P levels of different plant functional groups(e.g.,monocots and dicots)respond to environmental gradients in a generalizable pattern.Here,we used a global database of leaf N and P to determine whether monocots and dicots might have evolved contrasting strategies to balance N and P in response to changes in climate and soil nutrient availability.Specifically,we characterized global patterns of leaf N,P and N/P ratio in monocots and dicots,and explored the sensitivity of stoichiometry to environment factors in these plants.Our results indicate that leaf N and P levels responded to environmental factors differently in monocots than in dicots.In dicots,variations of leaf N,P and N/P ratio were significantly correlated to temperature and precipitation.In monocots,leaf N/P ratio was not significantly affected by temperature or precipitation.This indicates that leaf N,P and N/P ratio are less sensitive to environmental dynamics in monocots.We also found that in both monocots and dicots N/P ratios are associated with the availability of soil total P rather than soil total N,indicating that P limitation on plant growth is pervasive globally.In addition,there were significant phylogenetic signals for leaf N(λ=0.65),P(λ=0.57)and N/P ratio(λ=0.46)in dicots,however,only significant phylogenetic signals for leaf P in monocots.Taken together,our findings indicate that monocots exhibit a“conservative”strategy(high stoichiometric homeostasis and weak phylogenetic signals in stoichiometry)to maintain their growth in stressful conditions with lower water and soil nutrients.In contrast,dicots exhibit lower stoichiometric homeostasis in changing environments because of their wide climate-soil niches and significant phylogenetic signals in stoichiometry.
基金supported by the National Natural Science Foundation of China(82200725)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)+4 种基金the Fundamental Research Funds for the Central Universities(226-2023-00114,226-2022-00226,and 226-2023-00059)the Key Program of National Natural Science Foundation of China(81930016)the Key Research and Development Program of China(2021YFA1100500)the Major Research Plan of the National Natural Science Foundation of China(92159202)the Ningbo Top Medical and Health Research Program(2022030309).
文摘Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset.
基金financially supported by the third xinjiang scientific expedition program (grant no.2022xjkk0901)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA2006030102)the National Natural Sciences Foundation of China(No.42171068 and No.42330503)。
文摘Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.
基金Guillermo Bañares was funded through grants from the Spanish Ministry of Education (FPU14/05303),Escuela Internacional de Doctorado-Universidad Rey Juan Carlos (Doctor Internacional 2017)and the Education and Research Department of Madrid Autonomous Region Government (REMEDINAL TE,S2018/EMT-4338)supported through three grants from the Spanish Ministries of Economy and Competitiveness and Science and Technology (CGL2013-45634-P,CGL2016-75414-P,and PID2019-105064 GB-I00)a grant from Centro de Estudios de América Latina (CEAL)at Universidad Autónoma de Madrid and Banco Santander.
文摘Mountains are paramount for exploring biodiversity patterns due to the mosaic of topographies and climates encompassed over short distances.Biodiversity research has traditionally focused on taxonomic diversity when investigating changes along elevational gradients,but other facets should be considered.For first time,we simultaneously assessed elevational trends in taxonomic,functional,and phylogenetic diversity of woody plants in Andean tropical montane forests and explored their underlying ecological and evolutionary causes.This investigation covered four transects(traversing ca.2200 m a.s.l.) encompassing 114 plots of 0.1 ha across a broad latitudinal range(ca.10°).Using Hill numbers to quantify abundance-based diversity among 37,869 individuals we observed a consistent decrease in taxonomic,functional,and phylogenetic diversity as elevation increased,although the decrease was less pronounced for higher Hill orders.The exception was a slight increase in phylogenetic diversity when dominant species were over-weighted.The decrease in taxonomic and functional diversity might be attributed to an environmental filtering process towards highlands,where the increasingly harsher conditions exclude species and functional strategies.Besides,the differences in steepness decrease between Hill orders suggest that rare species disproportionately contribute to functional diversity.For phylogenetic diversity the shifting elevational trend between Hill orders indicates a greater than previously considered influence in central Andean highlands of tropical lowlands originated species with strong niche conservatism relative to distantly related temperate lineages.This could be explained by a decreasing presence and abundance of temperate,extratropical taxa towards the central Andes relative to northern or southern Andes,where they are more prevalent.
基金co-supported by the National Natural Science Foundation of China(Grant No.31470311)the Ph.D.Programs Foundation of the Ministry of Education of China(Grant No.20136101130001).
文摘China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations.One of these relict lineages is Dipteronia,an oligotypic tree genus with a fossil record extending to the Paleocene.Here,we investigated the genetic variability,demographic dynamics and diversification patterns of the two currently recognized Dipteronia species(Dipteronia sinensis and D.dyeriana).Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions,two single copy nuclear genes and 15 simple sequence repeat loci.The genetic study was combined with niche comparison analyses on the environmental space,ecological niche modeling,and landscape connectivity analysis.We found that the two Dipteronia species have highly diverged both in genetic and ecological terms.Despite the incipient speciation processes that can be observed in D.sinensis,the occurrence of long-term stable refugia and,particularly,a dispersal corridor along Daba Shan-west Qinling,likely ensured its genetic and ecological integrity to date.Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic,but also provide insight into how Arcto-Tertiary relict plants in East Asia survived,evolved,and diversified.
文摘Changing climate will jeopardize biodiversity,particularly the geographic distribution of endemic species.One such species is the Javan Hawk-Eagle(JHE,Nisaetus bartelsi),a charismatic raptor found only on Java Island,Indonesia.Thus,it is crucial to develop an appropriate conservation strategy to preserve the species.Ecological niche modeling is considered a valuable tool for designing conservation plans for the JHE.We provide an ecological niche modeling approach and transfer its model to future climate scenarios for the JHE.We utilize various machine learning algorithms under sustainability and business-as-usual(BAU)scenarios for 2050.Additionally,we investigate the conservation vulnerability of the JHE,capturing multifaceted pressures on the species from climate dissimilarities and human disturbance variables.Our study reveals that the ensemble model performs exceptionally well,with temperature emerging as the most critical factor affecting the JHE distribution.This finding indicates that climate change will have a significant impact on the JHE species.Our results suggest that the JHE distribution will likely decrease by 28.41%and 40.16%from the current JHE distribution under sustainability and BAU scenarios,respectively.Furthermore,our study reveals high-potential refugia for future JHE,covering 7,596 km^(2)(61%)under the sustainability scenario and only 4,403 km^(2)(35%)under the BAU scenario.Therefore,effective management and planning,including habitat restoration,refugia preservation,habitat connectivity,and local community inclusivity,should be well-managed to achieve JHE conservation targets.
基金support from the Ningxia Natural Science Foundation Project(2023AAC03361).
文摘The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.
基金Supported by Scientific Research Fund Project of Education Department of Yunnan Province,No.2023J0346the Kunming Health Commission Kunming Health Science and Technology Personnel Training Project,No.2021-SW-75the Medical and Health Science and Technology Project of Kunming Health Committee,No.2022-03-09-008.
文摘Proliferation and differentiation of intestinal stem cell(ISC)to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation.However,when this disordered proliferation continues,it induces the ISC to enter a cancerous state.The gut microbiota on the free surface of the gut mucosal barrier is able to interact with ISC on a sustained basis.Micro-biota metabolites are able to regulate the proliferation of gut stem and progenitor cells through transcription factors,while in steady state,differentiated colono-cytes are able to break down such metabolites,thereby protecting stem cells at the gut crypt.In the future,the gut flora and its metabolites mediating the regulation of ISC differentiation will be a potential treatment for enteropathies.