GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,...GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,and the findings indicated excellent creep rupture properties at 700℃.Furthermore,the extrapolated strength for 100000 h was found to be 153.8 MPa,which satisfies the requirements for the long-term performance of high-temperature materials in power stations.Aging at 700℃ with the extension of time,the grain boundary carbides and the particle size of the γ′phase on the matrix gradually coarsen,but its spherical morphology remains uniformly distributed.However,no harmful phase precipitates were found even after aging at 700℃ for up to 19144 h.Excellent microstructure stability guarantees the 700℃ creep rupture properties of the GH984G alloy tube.展开更多
文摘GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,and the findings indicated excellent creep rupture properties at 700℃.Furthermore,the extrapolated strength for 100000 h was found to be 153.8 MPa,which satisfies the requirements for the long-term performance of high-temperature materials in power stations.Aging at 700℃ with the extension of time,the grain boundary carbides and the particle size of the γ′phase on the matrix gradually coarsen,but its spherical morphology remains uniformly distributed.However,no harmful phase precipitates were found even after aging at 700℃ for up to 19144 h.Excellent microstructure stability guarantees the 700℃ creep rupture properties of the GH984G alloy tube.