Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim...Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.展开更多
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l...A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.展开更多
The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the...The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.展开更多
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni...Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.展开更多
The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of...The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.展开更多
Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of...Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained.展开更多
To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and ...To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.展开更多
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com...Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.展开更多
In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by hea...In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process.展开更多
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS...Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.展开更多
As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaos...As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.展开更多
Photocatalysis has emerged as a promising alternative for converting and utilizing CO_(2).Polymeric carbon nitride(PCN),typically synthesized through the one-step thermal polycondensation of nitrogen-rich precursors,h...Photocatalysis has emerged as a promising alternative for converting and utilizing CO_(2).Polymeric carbon nitride(PCN),typically synthesized through the one-step thermal polycondensation of nitrogen-rich precursors,has shown considerable promise due to its adjustable band structure and inherent safety.Over the past five years,significant literature in this field has identified five primary methods for modifying PCN:morphology modulation,element doping,defect induction,co-catalyst loading,and heterojunction construction.A detailed discussion on how each modification method influences light absorption,charge separation,and surface reaction efficiencies in photocatalysis is provided.Based on these findings,several future directions for the development of PCN-based materials are proposed,such as designing tailored PCN structures for specific photocatalytic reactions and using theoretical calculations to verify and correct results from current characterization methods.Despite the challenges associated with the large-scale synthesis of PCN materials with controllable structures and satisfactory performance,this work offers valuable insights for advancing photocatalytic PCN-based systems for large-scale solar fuel production.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Mot...Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Motivated by this statement,we calculate the stability,elastic properties,electronic properties and energy density of the Cmc2_(1) structure for pnictogen nitrides X_(3)N_(5)(X=P,As,Sb,and Bi)using first-principles calculations combined with particle swarm optimization algorithms.Calculations of formation enthalpies,elastic constants and phonon spectra show that P_(3)N_(5),As_(3)N_(5) and Sb_(3)N_(5) are thermodynamically,mechanically and kinetically stable at 35 GPa,whereas Bi_(3)N_(5) is mechanically and kinetically stable but thermodynamically unstable.The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds,confirmed by the calculated electronic localization function.We also calculate the energy densities for Sb_(3)N_(5) and find it to be a potentially high-energy-density material.展开更多
Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stabil...Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stability,wide band gap and tunable morphology.Both pure TMN and TMN-based materials have been extensively studied concerned with their preparation approaches,nanostructures,and favored performance in various applications.However,the processes towards synthesis of TMN are numerous and complex.Choosing appropriate method to obtain target TMN with desired structure is crucial,which further affects its practical application performance.Herein,this review offers a timely and comprehensive summary of the synthetic ways to TMN and their application in energy related domains.The synthesis section is categorized into in-situ and ex-situ based on where the N element in TMN origins from.Then,overviews on the energy related applications including energy storage,electrocatalysis and photocatalysis are discussed.In the end,the problems to be solved and the development trend of the synthesis and application of transition metal nitrides are prospected.展开更多
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b...ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金financially supported by the National Key R&D Program of China(2022YFA1503003)the National Natural Science Foundation of China(91961111,22271081)+3 种基金the Natural Science Foundation of Heilongjiang Province(ZD2021B003)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020004)The Basic Research Fund of Heilongjiang University in Heilongjiang Province(2021-KYYWF-0039)the Heilongjiang University Excellent Youth Foundation。
文摘Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.
基金Natural Science Foundation of Hebei ProvinceTangshan Talent Funding Project,Grant/Award Number:E2022209039+1 种基金Key Research Project of North China University of Science and Technology,Grant/Award Number:ZD-YG 202301Tangshan Talent Punding Project,Grant/Award Number:A202202007
文摘A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.
基金China Scholarship Council,Grant/Award Number:201806950083Advanced Materials research program of the Zernike National Research CentreFaculty of Science and Engineering(FSE),University of Groningen。
文摘The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.
基金This work was supported by the National Key Research and Development Project(Nos.2019YFA0705403,2022YFA1205300)the National Natural Science Foundation of China(No.T2293693)+3 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(No.2017ZT07C341)the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004)Zhiyuan Xiong thanks the financial support from South China University of Technology.
文摘Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.
基金AP is grateful for the financial support of Science Foundation Ireland(SFI)under grant number 18/SIRG/5621 and Enterprise Ireland under grant number CS20212089DG is grateful to the Australian Research Council(ARC)for a support in the frame of an ARC Laureate project No FL160100089.Open access funding provided by IReL.
文摘The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.
基金Funed by the National Key Research and Development Program of China(No.2021YFA0715700)the Open Fund of Hubei Longzhong Laboratory。
文摘Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202)the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017)+1 种基金the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matterthe Youth Supporting Program of Institute of Semiconductors
文摘To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.
基金Funded by the National Natural Science Foundation of China(No.52071252)the Key Research and Development Plan of Shaanxi Province Industrial Project(Nos.2021GY-208,2022GY-407,and 2021ZDLSF03-11)the China Postdoctoral Science Foundation(No.2020M683670XB)。
文摘Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.
文摘In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process.
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
基金financially supported by the National Natural Science Foundation of China(No.61804136,U1804155,11974317,62027816,12074348,and U2004168)Henan Science Fund for Distinguished Young Scholars(No.212300410020)+2 种基金Natural Science Foundation of Henan Province(No.212300410020 and 212300410078)Key Project of Henan Higher Education(No.21A140001)the Zhengzhou University Physics Discipline Improvement Program and China Postdoctoral Science Foundation(No.2018M630829 and 2019 T120630)
文摘Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.
基金the National Natural Science Foundation of China(12074348,12261141661,62204223,52072345,and 12174348)the China Postdoctoral Science Foundation(2022TQ0307)the Natural Science Foundation of Henan Province(242300421179 and 222102310664).
文摘As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.
基金the National Natural Science Foundation of China(22209207)the National Key Research and Development Program of China(2022YFB4002400).
文摘Photocatalysis has emerged as a promising alternative for converting and utilizing CO_(2).Polymeric carbon nitride(PCN),typically synthesized through the one-step thermal polycondensation of nitrogen-rich precursors,has shown considerable promise due to its adjustable band structure and inherent safety.Over the past five years,significant literature in this field has identified five primary methods for modifying PCN:morphology modulation,element doping,defect induction,co-catalyst loading,and heterojunction construction.A detailed discussion on how each modification method influences light absorption,charge separation,and surface reaction efficiencies in photocatalysis is provided.Based on these findings,several future directions for the development of PCN-based materials are proposed,such as designing tailored PCN structures for specific photocatalytic reactions and using theoretical calculations to verify and correct results from current characterization methods.Despite the challenges associated with the large-scale synthesis of PCN materials with controllable structures and satisfactory performance,this work offers valuable insights for advancing photocatalytic PCN-based systems for large-scale solar fuel production.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金the Young Talent Project of the Scientific Research Plan by the Hubei Provincial Department of Education(Grant No.Q20234301)the Guiding Project of the Scientific Research Plan by the Hubei Provincial Department of Education(Grant No.B2023222)+2 种基金the Natural Science Foundation of Hubei Province(Grant No.2022CFB527)the Scientific Research Project of Jingchu University of Technology(Grant Nos.YY202401,096201-5 Chin.Phys.B 33,096201(2024)YY202409,YY202207,and YB202212)the Open Research Projects of Jingchu University of Technology(Grant No.HX20240009).
文摘Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Motivated by this statement,we calculate the stability,elastic properties,electronic properties and energy density of the Cmc2_(1) structure for pnictogen nitrides X_(3)N_(5)(X=P,As,Sb,and Bi)using first-principles calculations combined with particle swarm optimization algorithms.Calculations of formation enthalpies,elastic constants and phonon spectra show that P_(3)N_(5),As_(3)N_(5) and Sb_(3)N_(5) are thermodynamically,mechanically and kinetically stable at 35 GPa,whereas Bi_(3)N_(5) is mechanically and kinetically stable but thermodynamically unstable.The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds,confirmed by the calculated electronic localization function.We also calculate the energy densities for Sb_(3)N_(5) and find it to be a potentially high-energy-density material.
基金support offered by National Natural Science Foundation of China(NSFC,Grant No.21403091)。
文摘Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stability,wide band gap and tunable morphology.Both pure TMN and TMN-based materials have been extensively studied concerned with their preparation approaches,nanostructures,and favored performance in various applications.However,the processes towards synthesis of TMN are numerous and complex.Choosing appropriate method to obtain target TMN with desired structure is crucial,which further affects its practical application performance.Herein,this review offers a timely and comprehensive summary of the synthetic ways to TMN and their application in energy related domains.The synthesis section is categorized into in-situ and ex-situ based on where the N element in TMN origins from.Then,overviews on the energy related applications including energy storage,electrocatalysis and photocatalysis are discussed.In the end,the problems to be solved and the development trend of the synthesis and application of transition metal nitrides are prospected.
基金supported by the National Natural Science Foundation of China(Grant No.51871078 and 52071119)Interdisciplinary Research Foundation of HIT(Grant No.IR2021208)+1 种基金State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS38)Heilongjiang Science Foundation(No.LH2020B006).
文摘ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.