期刊文献+
共找到1,454篇文章
< 1 2 73 >
每页显示 20 50 100
High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys 被引量:14
1
作者 LI Hua-bing JIANG Zhou-hua SHEN Ming-hui YOU Xiang-mi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第3期63-68,共6页
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas... A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite. 展开更多
关键词 nitrogen gas alloying nitrided ferroalloy high nitrogen austenitic stainless steel vacuum induction melting electroslag remelting
下载PDF
Microstructures and properties of the nitrided layers fabricated on titanium substrate by direct current nitrogen arc melting technique 被引量:2
2
作者 李欣 任振安 +2 位作者 孙大千 王丽 赵运强 《China Welding》 EI CAS 2008年第1期18-22,共5页
The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrat... The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers. 展开更多
关键词 direct current nitrogen arc melting nitrided layer microstructure HARDNESS wear resistance
下载PDF
Bacteria Adherence Properties of Nitrided Layer on Ti6Al4V by the Plasma Nitriding Technique 被引量:1
3
作者 FAN Ailan ZHANG Huiqiao +3 位作者 MA Yong ZHANG Xiangyu ZHANG Jianqiang TANG Bin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1223-1226,共4页
The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoele... The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence. 展开更多
关键词 TI6A14V plasma nitriding technique nitrided layer bacteria adherence property
下载PDF
MATHEMATICAL MODELS OF NITROGEN CONCENTRATION PROFILE OF ION NITRIDED LAYERS AND COMPUTER SIMULATION 被引量:5
4
作者 XIA Lifang YAN Mufu Harbin Institute of Technology,Harbin,China Laboratory of Metal Materials and Heat treatment,Harbin Institute of Technology,Harbin,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第7期18-26,共9页
The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrog... The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrogen concentration profile of ion nitrided layers have been deduced with profile simulating method.They are C_=C_(min)^+(P_4)/(ξ_1-x)+(P_5)/(ξ_(10)~2)(ξ_1-x)~2 C_(γ′)=C_(min)^(γ′)+(P_1)/(ξ_(21))(ξ_2-x)+(P_2)/(ξ_(21)~2)(ξ_2-x)~2 C_α=C_(min)~α+(C_(33))/(C_(33))/(ξ_(32))(ξ_3-x)~3 Using these models,the kinetics of layer growth and the nitrogen concentration profile of ion nitrided layers were sinulated on Apple-Ⅱ computer.Results show that the simulated curves coincide quite well with the experimental data. 展开更多
关键词 computer simulation ion nitriding nitrogen concentration profile
下载PDF
Mathematical Models and Computer Simulation of Nitrogen Concentration Profiles in Pulse Plasma Nitrided Layers 被引量:1
5
作者 Mufu YAN Qingchang MENG Jihong YAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期164-166,共3页
Two materials, pure Fe and pure Al, were nitrided in a pulse plasma nitriding facility. The nitrogen profiles in surface layers and the surface phase structures of specimens nitrided at 500℃ for 8 h for Fe and for 6 ... Two materials, pure Fe and pure Al, were nitrided in a pulse plasma nitriding facility. The nitrogen profiles in surface layers and the surface phase structures of specimens nitrided at 500℃ for 8 h for Fe and for 6 h for Al were measured using the glow discharge spectrometry and an X-ray diffractometer, respectively. XRD results indicate that the compound layer with hcp crystal structure (AIN) was formed on the top of Al substrate. During nitriding of Fe, the compound layer growth conforms to parabolic law and the surface nitrogen concentration change little with increasing the nitriding time. The surface nitrogen content of nitrided Al specimens is less than theoretical value 34.17 wt pct of AIN. The mathematical models of nitrogen concentration profiles in the surface layer of nitrided Al specimen have been established based on the research of the kinetics of pulse plasma nitriding of Fe and the nitrogen concentration profiles were also simulated. Results show that the predicted curves agree basically with the experimental data. 展开更多
关键词 PULSE PLASMA nitriding NITROGEN CONCENTRATION profile COMPUTER simulation
下载PDF
Mathematical Models and Computer Simulation of Nitrogen Concentration Profiles in Pulse Ion Nitrided Layers 被引量:1
6
作者 Mufu Yan, Jihong Yan, Lifang Xia, Yong Sun, Tom Bell 1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China 2.Department of Automation, Tsinghua University, Beijing 100084, P. R. China 3.School of Meta 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期294-297,共4页
The nitrogen concentration profiles in surface layers and surface phase structures were accurately measured respectively using the glow discharge spectrometry and X-ray Diffractometer after the specimens had been pu... The nitrogen concentration profiles in surface layers and surface phase structures were accurately measured respectively using the glow discharge spectrometry and X-ray Diffractometer after the specimens had been pulse ion nitrided at 500℃ for 0.2-8h The results show that the compound layer growth, which is different from that of conventional DC nitriding, conforms to parabolic law At the same time the surface nitrogen concentration change little with increasing the nitriding time, at least it is so when the treating time is longer than 0.2h In addition, the mathematical models of nitrogen concentration profiles in ε -Fe2~3N,γ-Fe4N and α -Fe phases have been established. Using them the nitrogen concentration profiles in nitrided layers were simulated. Results show that the simulated curves coincide quite well with the experimental data. 展开更多
关键词 Pulse Ion Nitriding Nitrogen Concentration Profile Computer Simulation
下载PDF
Influence of Processing Parameters on the Mechanical Properties of a Plasma Radical Nitrided SCM440 Steel
7
作者 Seok-Hwan Ahn Insup Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期356-358,共3页
Plasma radical nitriding was performed to harden the surface of SCM440 steel for 1-10 h at temperature range of 450-550℃. This process involved the use of NH3 gas instead of N2 gas employed for the well-established p... Plasma radical nitriding was performed to harden the surface of SCM440 steel for 1-10 h at temperature range of 450-550℃. This process involved the use of NH3 gas instead of N2 gas employed for the well-established plasma nitriding method. No compound layer was formed during this process except the experiment carried out at 500℃ for 10 h. The main phase produced in the diffusion zone was identified to be γ'-Fe4(N, C). A diffusion depth increased with increasing treatment temperature and time (up to about 250 μm). The surface hardness of radical nitrided layer was about two times higher than that of the untreated surface. The tensile test was carried out to estimate the mechanical properties of surface-hardened SCM440 steel prepared at various plasma radical nitriding treatment time and temperature. The influence of radical nitriding treatment on the tensile strength of the specimen was found to be insignificant. The highest value of the ultimate tensile strength was obtained in the experiment carried out at 500℃ for 1 h. However, the elongation was greatly affected by the radical nitriding processing parameters. The maximum value of elongation, which is equal to about 18.1%, was also obtained under the condition of 500℃ for 1 h. 展开更多
关键词 Plasma radical nitriding Tensile strength ELONGATION Surface hardness Diffusion depth Compound layer
下载PDF
SPALLING MECHANISM OF NITRIDED LAYER OF AUSTENITIC STEEL 4Cr14Ni14W2Mo
8
作者 SUN Xudong LI Jian Northeast University of Technology,Shenyang,China Lecturer,Dept.of Materials Science and Engineering,Northeast University of Technology,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第5期374-376,共3页
The tendency of spalling of the nitrided layer of the hot rolled austenitic steel 4Cr14Ni14W2Mo exhibits close relation to the nitrided surface orientation relative to the rol- led steel rod.It is found that the dislo... The tendency of spalling of the nitrided layer of the hot rolled austenitic steel 4Cr14Ni14W2Mo exhibits close relation to the nitrided surface orientation relative to the rol- led steel rod.It is found that the dislocations in the imperfectly recrystalized steel align as parallel dislocation walls in macroscopic extent,and the thickness of the“white sublayer”in the nitrided layer is much larger at the surface which is parallel to the dislocation walls.On such surface the spalling of the nitrided layer happens often. 展开更多
关键词 NITRIDING SPALLING heat resistant steel
下载PDF
Effect of sliding velocity in vacuum on tribological behavior of nitrided 2Cr13 steel
9
作者 WANG Gang,MA Xinxin,TANG Guangze,LIU Yong,YANG Dezhuang,and HE Shiyu School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期195-198,共4页
The effects of sliding velocity on the friction and wear of 2Cr13 pin/2Cr13 nitriding disc in vacuum were studied.The result show that the friction properties of 2Cr13 nitriding under high sliding velocity(1.6 m·... The effects of sliding velocity on the friction and wear of 2Cr13 pin/2Cr13 nitriding disc in vacuum were studied.The result show that the friction properties of 2Cr13 nitriding under high sliding velocity(1.6 m·s-1) is better than that under low sliding velocity(0.8 m·s-1).The friction coefficient was 0.4~0.5 when sliding velocity was 1.6 m·s-1.The specimens under vacuum condition are easier to adhere,and the wear under 1.6 m·s-1 is higher than that under 0.8 m·s-1. 展开更多
关键词 VACUUM 2Cr13 nitriding FRICTION
下载PDF
The microstructural characterization of the nitrided layers prepared by direct current nitrogen arc
10
作者 李欣 赵磊 +1 位作者 孙大千 任振安 《China Welding》 EI CAS 2010年第3期37-40,共4页
The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM... The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs as well as X-ray diffraction ( XRD ). The titanium nitride ( TiN ) dendrites were fully developed with interconnected cellular morphologies at the top surface but grew almost perpendicular to the integrace with coarser arms in the middle area. Also less TiN was found near the interface. The energy inputs had an obvious effect on the microstructures and the hardness of the nitrided layers. The maximum micro-hardness was 2 500 HV at the top surface which was over 9 times higher than that of the substrate. 展开更多
关键词 direct current nitrogen arc titanium nitride MICROSTRUCTURE HARDNESS
下载PDF
Effect of Nitriding Current Density on the Surface Properties and Crystallite Size of Pulsed Plasma-Nitrided AISI 316L
11
作者 J. C. Díaz-Guillén E. E. Granda-Gutiérrez +3 位作者 G. Vargas-Gutiérrez M. R. Díaz-Guillén J. A. Aguilar-Martínez L. álvarez-Contreras 《Journal of Materials Science and Chemical Engineering》 2015年第1期45-51,共7页
In this work, plasma-nitrided AISI 316L stainless steel samples were performed by ion nitriding process under pulsed direct current (DC) discharge at different current densities (1 to 2.5 mA/ cm2). The effect of nitri... In this work, plasma-nitrided AISI 316L stainless steel samples were performed by ion nitriding process under pulsed direct current (DC) discharge at different current densities (1 to 2.5 mA/ cm2). The effect of nitriding current density on the size of crystalline coherently diffracting domains (crystallite size) and strain grade was investigated using X-ray diffraction (XRD) coupled with Williamson-Hall method. Additionally, hardness and wear resistance of the nitriding layer were characterized using a Vickers indenter and pin-on-disk technique respectively. Results showed a decrease in crystallite size from 99 nm for untreated samples to 1.4 nm for samples nitrided at 2.5 mA/cm2 promoted both: an increase in hardness from 226 HV25g to 1245 HV25g, and a considerably decrease in volume loss by wear effect. 展开更多
关键词 Plasma NITRIDING Strain CRYSTALLITE Size HARDNESS WEAR STAINLESS
下载PDF
Microstructure and properties of gradient nitrided layer on Ti6Al4V alloys 被引量:1
12
作者 Feng Yang Kun-Mao Li +2 位作者 Xing-Jun Liu Hong Sun Cui-Ping Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期651-663,共13页
The vacuum electromagnetic induction nitriding technology was applied to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy,which possesses TiN andα-Ti(N)phases.Moreover,transmission electron microsc... The vacuum electromagnetic induction nitriding technology was applied to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy,which possesses TiN andα-Ti(N)phases.Moreover,transmission electron microscopy was conducted to confirm the presence of numerous high-density stacking faults caused by TiN and Ti_(2)N phases distributed on the surface of the alloy,along with a large number of basal stacking faults inside.A highdensity stacking fault led to serious distortion of lattice fringes.Lattice and numerous edge dislocations caused by defects were observed in the subsurface layer.For the surface layer,the Vickers hardness reached HV_(0.25)1211.30and the residual compressive stress increased,while the nano-hardness increased to 14.07 from 5.31 GPa in the substrate.The micrometre scratch test results indicated that the plasticity and hardness of the nitrided layer changed in a gradient.The 50-μm effective hardened layer depth and surface compressive stress of the Ti6Al4V alloy were enhanced by the stacking faults. 展开更多
关键词 TI6AL4V Induction nitriding Gradient layer High-density dislocation Strengthening mechanism
原文传递
Strong metal–support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride 被引量:1
13
作者 Xin Wang Xiaoli Yang +7 位作者 Guangxian Pei Jifa Yang Junzhe Liu Fengwang Zhao Fayi Jin Wei Jiang Haoxi Ben Lixue Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期245-254,共10页
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr... Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering. 展开更多
关键词 electronic structure hydrogen evolution reaction RUTHENIUM strong metal-support interaction titanium nitride
下载PDF
Hollow Ni Mo-based nitride heterojunction with super-hydrophilic/aerophobic surface for efficient urea-assisted hydrogen production 被引量:1
14
作者 Yuying Fan Ying Gu +3 位作者 Dongxu Wang Yanqing Jiao Aiping Wu Chungui Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期428-439,I0009,共13页
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim... Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis. 展开更多
关键词 Hydrogen evolution Transition metal nitrides Hollow heterojunctions Urea electrooxidation Super hydrophilic/aerophobic
下载PDF
Engineering g-C_(3)N_(4)based materials for advanced photocatalysis:Recent advances 被引量:1
15
作者 Xin-Lian Song Lei Chen +2 位作者 Li-Jiao Gao Jin-Tao Ren Zhong-Yong Yuan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期166-197,共32页
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti... Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications. 展开更多
关键词 Graphitic carbon nitride g-C_(3)N_(4) Design strategies PHOTOCATALYSIS PHOTOCATALYSTS Reaction mechanism
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
16
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride Thermal conductivity Electrical insulation
下载PDF
Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery 被引量:3
17
作者 Jian-Feng Zheng Zi-Wei Xi +17 位作者 Yang Li Jia-Nan Li Hong Qiu Xiao-Ying Hu Tong Luo Chao Wu Xin Wang Lai-Feng Song Li Li Hai-Ping Qi Gui Zhang Li Qin Wan-Qian Zhang Xiao-Li Shi Shu-Han Wang De-Yuan Zhang Bo Xu Run-Lin Gao 《Bioactive Materials》 SCIE 2022年第11期496-505,共10页
This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine c... This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine coronary arteries. Fifty-two nitrided iron scaffolds (strut thickness of 70 μm) and 28 Vision Co–Cr stents were randomly implanted into coronary arteries of healthy mini-swine. The efficacy and safety of the nitrided iron scaffold were comparable with those of the Vision stentwithin 52 weeks after implantation. In addition, the long-term biocompatibility, safety, and bioresorption of the nitrided iron scaffold were evaluated by coronary angiog-raphy, optical coherence tomography, micro-computed tomography, scanning electron microscopy, energy dispersive spectrometry and histopathological evaluations at 4, 12, 26, 52 weeks and even at 7 years after im-plantation. In particular, a large number of struts were almost completely absorbed in situ at 7 years follow-up, which were first illustrated in this study. The lymphatic drainage pathway might serve as the potential clearance way of iron and its corrosion products. 展开更多
关键词 Bioresorbable scaffold nitrided iron bioresorbable coronary scaffold Preclinical study Completely bioresorbable
原文传递
Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
18
作者 Ruike Zhang Ruiang Guo +3 位作者 Qian Li Shuaiqi Li Haidong Long Duanwei He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期450-457,共8页
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi... Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance. 展开更多
关键词 hexagonal boron nitride phase diagram high temperature and high pressure cubic boron nitride phase transition differential thermal analysis
下载PDF
Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding
19
作者 Chen Li Yuxiu Hu +4 位作者 Zongze Wei Chongjun Wu Yunfeng Peng Feihu Zhang Yanquan Geng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期469-484,共16页
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio... Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives. 展开更多
关键词 GRINDING double-grits molecular dynamics damage material removal gallium nitride
下载PDF
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
20
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部