期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Blockchain-Enabled Federated Learning for Privacy-Preserving Non-IID Data Sharing in Industrial Internet
1
作者 Qiuyan Wang Haibing Dong +2 位作者 Yongfei Huang Zenglei Liu Yundong Gou 《Computers, Materials & Continua》 SCIE EI 2024年第8期1967-1983,共17页
Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by d... Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet. 展开更多
关键词 Federated learning data sharing non-iid data differential privacy blockchain
下载PDF
面向Non-IID数据的拜占庭鲁棒联邦学习 被引量:3
2
作者 马鑫迪 李清华 +4 位作者 姜奇 马卓 高胜 田有亮 马建峰 《通信学报》 EI CSCD 北大核心 2023年第6期138-153,共16页
面向数据分布特征为非独立同分布的联邦学习拜占庭节点恶意攻击问题进行研究,提出了一种隐私保护的鲁棒梯度聚合算法。该算法设计参考梯度用于识别模型训练中“质量较差”的共享梯度,并通过信誉度评估来降低数据分布异质对拜占庭节点识... 面向数据分布特征为非独立同分布的联邦学习拜占庭节点恶意攻击问题进行研究,提出了一种隐私保护的鲁棒梯度聚合算法。该算法设计参考梯度用于识别模型训练中“质量较差”的共享梯度,并通过信誉度评估来降低数据分布异质对拜占庭节点识别的影响。同时,结合同态加密和随机噪声混淆技术来保护模型训练和拜占庭节点识别过程中的用户隐私。最后,在真实数据集中进行仿真测试,测试结果表明所提算法能够在保护用户隐私的条件下,准确、高效地识别拜占庭攻击节点,具有较好的收敛性和鲁棒性。 展开更多
关键词 联邦学习 拜占庭攻击 非独立同分布 隐私保护 同态加密
下载PDF
A Survey of Federated Learning on Non-IID Data
3
作者 HAN Xuming GAO Minghan +2 位作者 WANG Limin HE Zaobo WANG Yanze 《ZTE Communications》 2022年第3期17-26,共10页
Federated learning(FL) is a machine learning paradigm for data silos and privacy protection,which aims to organize multiple clients for training global machine learning models without exposing data to all parties.Howe... Federated learning(FL) is a machine learning paradigm for data silos and privacy protection,which aims to organize multiple clients for training global machine learning models without exposing data to all parties.However,when dealing with non-independently identically distributed(non-ⅡD) client data,FL cannot obtain more satisfactory results than centrally trained machine learning and even fails to match the accuracy of the local model obtained by client training alone.To analyze and address the above issues,we survey the state-of-theart methods in the literature related to FL on non-ⅡD data.On this basis,a motivation-based taxonomy,which classifies these methods into two categories,including heterogeneity reducing strategies and adaptability enhancing strategies,is proposed.Moreover,the core ideas and main challenges of these methods are analyzed.Finally,we envision several promising research directions that have not been thoroughly studied,in hope of promoting research in related fields to a certain extent. 展开更多
关键词 data heterogeneity federated learning non-iid data
下载PDF
Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting 被引量:1
4
作者 Longbing Cao 《工程(英文)》 2016年第2期212-224,229-243,共28页
下载PDF
Federated learning on non-IID and long-tailed data viadual-decoupling
5
作者 Zhaohui WANG Hongjiao LI +2 位作者 Jinguo LI Renhao HU Baojin WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第5期728-741,共14页
Federated learning(FL),a cutting-edge distributed machine learning training paradigm,aims to generate a global model by collaborating on the training of client models without revealing local private data.The co-occurr... Federated learning(FL),a cutting-edge distributed machine learning training paradigm,aims to generate a global model by collaborating on the training of client models without revealing local private data.The co-occurrence of non-independent and identically distributed(non-IID)and long-tailed distribution in FL is one challenge that substantially degrades aggregate performance.In this paper,we present a corresponding solution called federated dual-decoupling via model and logit calibration(FedDDC)for non-IID and long-tailed distributions.The model is characterized by three aspects.First,we decouple the global model into the feature extractor and the classifier to fine-tune the components affected by the joint problem.For the biased feature extractor,we propose a client confidence re-weighting scheme to assist calibration,which assigns optimal weights to each client.For the biased classifier,we apply the classifier re-balancing method for fine-tuning.Then,we calibrate and integrate the client confidence re-weighted logits with the re-balanced logits to obtain the unbiased logits.Finally,we use decoupled knowledge distillation for the first time in the joint problem to enhance the accuracy of the global model by extracting the knowledge of the unbiased model.Numerous experiments demonstrate that on non-IID and long-tailed data in FL,our approach outperforms state-of-the-art methods. 展开更多
关键词 Federated learning non-iid Long-tailed data Decoupling learning Knowledge distillation
原文传递
Accelerating local SGD for non-IID data using variance reduction
6
作者 Xianfeng LIANG Shuheng SHEN +4 位作者 Enhong CHEN Jinchang LIU Qi LIU Yifei CHENG Zhen PAN 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第2期73-89,共17页
Distributed stochastic gradient descent and its variants have been widely adopted in the training of machine learning models,which apply multiple workers in parallel.Among them,local-based algorithms,including Local S... Distributed stochastic gradient descent and its variants have been widely adopted in the training of machine learning models,which apply multiple workers in parallel.Among them,local-based algorithms,including Local SGD and FedAvg,have gained much attention due to their superior properties,such as low communication cost and privacypreserving.Nevertheless,when the data distribution on workers is non-identical,local-based algorithms would encounter a significant degradation in the convergence rate.In this paper,we propose Variance Reduced Local SGD(VRL-SGD)to deal with the heterogeneous data.Without extra communication cost,VRL-SGD can reduce the gradient variance among workers caused by the heterogeneous data,and thus it prevents local-based algorithms from slow convergence rate.Moreover,we present VRL-SGD-W with an effectivewarm-up mechanism for the scenarios,where the data among workers are quite diverse.Benefiting from eliminating the impact of such heterogeneous data,we theoretically prove that VRL-SGD achieves a linear iteration speedup with lower communication complexity even if workers access non-identical datasets.We conduct experiments on three machine learning tasks.The experimental results demonstrate that VRL-SGD performs impressively better than Local SGD for the heterogeneous data and VRL-SGD-W is much robust under high data variance among workers. 展开更多
关键词 distributed optimization variance reduction local SGD federated learning non-iid data
原文传递
非独立同分布下联邦半监督学习的数据分享研究
7
作者 顾永跟 高凌轩 +1 位作者 吴小红 陶杰 《计算机工程》 CAS CSCD 北大核心 2024年第6期188-196,共9页
联邦学习作为一种保护本地数据隐私安全的分布式机器学习方法,联合分散的设备共同训练共享模型。通常联邦学习在数据均有标签情况下进行训练,然而现实中无法保证标签数据完全存在,提出联邦半监督学习。在联邦半监督学习中,如何利用无标... 联邦学习作为一种保护本地数据隐私安全的分布式机器学习方法,联合分散的设备共同训练共享模型。通常联邦学习在数据均有标签情况下进行训练,然而现实中无法保证标签数据完全存在,提出联邦半监督学习。在联邦半监督学习中,如何利用无标签数据提升系统性能和如何缓解数据异质性带来的负面影响是两大挑战。针对标签数据仅在服务器场景,基于分享的思想,设计一种可应用在联邦半监督学习系统上的方法Share&Mark,该方法将客户端的分享数据由专家标记后参与联邦训练。同时,为充分利用分享的数据,根据各客户端模型在服务器数据集上的损失值动态调整各客户端模型在联邦聚合时的占比,即ServerLoss聚合算法。综合考虑隐私牺牲、通信开销以及人工标注成本3个方面的因素,对不同分享率下的实验结果进行分析,结果表明,约3%的数据分享比例能平衡各方面因素。此时,采用Share&Mark方法的联邦半监督学习系统FedMatch在CIFAR-10和Fashion-MNIST数据集上训练的模型准确率均可提升8%以上,并具有较优的鲁棒性。 展开更多
关键词 联邦半监督学习 联邦学习 数据非独立同分布 鲁棒性 聚合算法 数据分享
下载PDF
面向非独立同分布数据的车联网多阶段联邦学习机制
8
作者 唐晓岚 梁煜婷 陈文龙 《计算机研究与发展》 EI CSCD 北大核心 2024年第9期2170-2184,共15页
车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决... 车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决的难题.联邦学习采用“数据不动模型动”的方式,为保护用户隐私和实现良好性能提供了可行方案.然而,受限于采集设备、地域环境、个人习惯的差异,多台车辆采集的数据通常表现为非独立同分布(non-independent and identically distributed,non-IID)数据,而传统的联邦学习算法在non-IID数据环境中,其模型收敛速度较慢.针对这一挑战,提出了一种面向non-IID数据的车联网多阶段联邦学习机制,称为FedWO.第1阶段采用联邦平均算法,使得全局模型快速达到一个基本的模型准确度;第2阶段采用联邦加权多方计算,依据各车辆的数据特性计算其在全局模型中的权重,聚合后得到性能更优的全局模型,同时采用传输控制策略,减少模型传输带来的通信开销;第3阶段为个性化计算阶段,车辆利用各自的数据进行个性化学习,微调本地模型获得与本地数据更匹配的模型.实验采用了驾驶行为数据集进行实验评估,结果表明相较于传统方法,在non-IID数据场景下,FedWO机制保护了数据隐私,同时提高了算法的准确度. 展开更多
关键词 车联网 联邦学习 非独立同分布数据 隐私保护 传输控制
下载PDF
基于稀疏正则双层优化的个性化联邦学习
9
作者 刘希 刘博 +1 位作者 季繁繁 袁晓彤 《模式识别与人工智能》 EI CSCD 北大核心 2024年第5期447-458,共12页
个性化联邦学习侧重于为各客户端提供个性化模型,旨在提高对异构数据的处理性能,然而现有的个性化联邦学习算法大多以增加客户端参数量为代价提高个性化模型的性能,使计算变得复杂.为了解决此问题,文中提出基于稀疏正则双层优化的个性... 个性化联邦学习侧重于为各客户端提供个性化模型,旨在提高对异构数据的处理性能,然而现有的个性化联邦学习算法大多以增加客户端参数量为代价提高个性化模型的性能,使计算变得复杂.为了解决此问题,文中提出基于稀疏正则双层优化的个性化联邦学习算法(Personalized Federated Learning Based on Sparsity Regularized Bi-level Optimization,pFedSRB),在客户端的个性化更新中引入l 1范数稀疏正则化,提升个性化模型的稀疏度,避免不必要的客户端参数更新,降低模型复杂度.将个性化联邦学习建模为双层优化问题,内层优化采用交替方向乘子法,可提高学习速度.在4个联邦学习基准数据集上的实验表明,pFedSRB在异构数据上表现出色,在提高模型性能的同时有效降低训练用时和空间成本. 展开更多
关键词 个性化联邦学习 稀疏正则化 非独立同分布(non-iid) 交替方向乘子法(ADMM)
下载PDF
Ada-FFL:Adaptive computing fairness federated learning
10
作者 Yue Cong Jing Qiu +4 位作者 Kun Zhang Zhongyang Fang Chengliang Gao Shen Su Zhihong Tian 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期573-584,共12页
As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improveme... As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improvement of all clients;however,the overall performance improvement often sacrifices the performance of certain clients,such as clients with less data.Ignoring fairness may greatly reduce the willingness of some clients to participate in federated learning.In order to solve the above problem,the authors propose Ada-FFL,an adaptive fairness federated aggregation learning algorithm,which can dynamically adjust the fairness coefficient according to the update of the local models,ensuring the convergence performance of the global model and the fairness between federated learning clients.By integrating coarse-grained and fine-grained equity solutions,the authors evaluate the deviation of local models by considering both global equity and individual equity,then the weight ratio will be dynamically allocated for each client based on the evaluated deviation value,which can ensure that the update differences of local models are fully considered in each round of training.Finally,by combining a regularisation term to limit the local model update to be closer to the global model,the sensitivity of the model to input perturbations can be reduced,and the generalisation ability of the global model can be improved.Through numerous experiments on several federal data sets,the authors show that our method has more advantages in convergence effect and fairness than the existing baselines. 展开更多
关键词 adaptive fariness aggregation FAIRNESS federated learning non-iid
下载PDF
FedAdaSS: Federated Learning with Adaptive Parameter Server Selection Based on Elastic Cloud Resources
11
作者 Yuwei Xu Baokang Zhao +1 位作者 Huan Zhou Jinshu Su 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期609-629,共21页
The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learnin... The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learning(FL).FL enables the distributed training of ML models,keeping data on local devices and thus addressing the privacy concerns of users.However,challenges arise from the heterogeneous nature of mobile client devices,partial engagement of training,and non-independent identically distributed(non-IID)data distribution,leading to performance degradation and optimization objective bias in FL training.With the development of 5G/6G networks and the integration of cloud computing edge computing resources,globally distributed cloud computing resources can be effectively utilized to optimize the FL process.Through the specific parameters of the server through the selection mechanism,it does not increase the monetary cost and reduces the network latency overhead,but also balances the objectives of communication optimization and low engagement mitigation that cannot be achieved simultaneously in a single-server framework of existing works.In this paper,we propose the FedAdaSS algorithm,an adaptive parameter server selection mechanism designed to optimize the training efficiency in each round of FL training by selecting the most appropriate server as the parameter server.Our approach leverages the flexibility of cloud resource computing power,and allows organizers to strategically select servers for data broadcasting and aggregation,thus improving training performance while maintaining cost efficiency.The FedAdaSS algorithm estimates the utility of client systems and servers and incorporates an adaptive random reshuffling strategy that selects the optimal server in each round of the training process.Theoretical analysis confirms the convergence of FedAdaSS under strong convexity and L-smooth assumptions,and comparative experiments within the FLSim framework demonstrate a reduction in training round-to-accuracy by 12%–20%compared to the Federated Averaging(FedAvg)with random reshuffling method under unique server.Furthermore,FedAdaSS effectively mitigates performance loss caused by low client engagement,reducing the loss indicator by 50%. 展开更多
关键词 Machine learning systems federated learning server selection artificial intelligence of things non-iid data
下载PDF
高效联邦学习:范数加权聚合算法
12
作者 陈攀 张恒汝 闵帆 《计算机应用研究》 CSCD 北大核心 2024年第3期694-699,共6页
在联邦学习中,跨客户端的非独立同分布(non-IID)数据导致全局模型收敛较慢,通信成本显著增加。现有方法通过收集客户端的标签分布信息来确定本地模型的聚合权重,以加快收敛速度,但这可能会泄露客户端的隐私。为了在不泄露客户端隐私的... 在联邦学习中,跨客户端的非独立同分布(non-IID)数据导致全局模型收敛较慢,通信成本显著增加。现有方法通过收集客户端的标签分布信息来确定本地模型的聚合权重,以加快收敛速度,但这可能会泄露客户端的隐私。为了在不泄露客户端隐私的前提下解决non-IID数据导致的收敛速度降低的问题,提出FedNA聚合算法。该算法通过两种方法来实现这一目标。第一,FedNA根据本地模型类权重更新的L 1范数来分配聚合权重,以保留本地模型的贡献。第二,FedNA将客户端的缺失类对应的类权重更新置为0,以缓解缺失类对聚合的影响。在两个数据集上模拟了四种不同的数据分布进行实验。结果表明,与FedAvg相比,FedNA算法达到稳定状态所需的迭代次数最多可减少890次,降低44.5%的通信开销。FedNA在保护客户端隐私的同时加速了全局模型的收敛速度,降低了通信成本,可用于需要保护用户隐私且对通信效率敏感的场景。 展开更多
关键词 联邦学习 通信成本 隐私保护 非独立同分布 聚合 权重更新
下载PDF
算力网络环境下基于区块链的自适应联邦学习
13
作者 刘天瑞 王连海 +3 位作者 王启正 徐淑奖 张淑慧 王英晓春 《网络与信息安全学报》 2024年第3期130-142,共13页
算力网络旨在深度融合算力资源与网络资源,实现对泛在离散部署的海量数据和异构资源的高效利用。为了应对算力网络中复杂的多中心计算协同和数据隐私安全的要求,联邦学习在隐私保护和边缘算力资源利用等方面有着先天的优势。然而,基于... 算力网络旨在深度融合算力资源与网络资源,实现对泛在离散部署的海量数据和异构资源的高效利用。为了应对算力网络中复杂的多中心计算协同和数据隐私安全的要求,联邦学习在隐私保护和边缘算力资源利用等方面有着先天的优势。然而,基于算力边缘服务器的高度异构和广泛分布,算力网络环境下的联邦学习仍然存在一定的困难。一方面,算力网络中海量边缘服务器之间存在的数据异质性会引起非独立同分布问题,导致联邦学习中局部模型的更新偏离全局最优值。另一方面,由于不同边缘服务器的数据质量存在差异,生成低质量的局部模型会显著影响训练效果。为了解决上述问题,提出了基于区块链的自适应联邦学习(AWFL-BC,adaptiveweightfederatedlearning-blockchain)方案。通过智能合约计算不同边缘服务器的数据分布距离,生成相似度矩阵指导聚合。同时,设计了一种自适应权重聚合算法,以减轻由数据质量差异引起的模型性能和稳定性下降,从而提升模型的准确率,加速模型收敛。最后,结合区块链技术加强了安全保障机制,可有效防止投毒攻击与推理攻击。在3个公有标准数据集上进行的综合实验表明,与最先进的方法相比,AWFL-BC实现了更高的模型准确率,且模型收敛速度更快。 展开更多
关键词 联邦学习 区块链 自适应权重 非独立同分布数据 算力网络
下载PDF
基于联邦学习的船舶AIS轨迹预测算法
14
作者 郑晨俊 曾艳 +3 位作者 袁俊峰 张纪林 王鑫 韩猛 《计算机工程》 CAS CSCD 北大核心 2024年第2期298-307,共10页
联邦学习是一种可以在弱通信环境下有效解决数据孤岛问题的分布式机器学习方法。针对海上船舶轨迹实时预测问题,提出基于Fedves联邦学习框架与卷积神经网络-门控循环单元(CNN-GRU)模型的船舶轨迹预测算法(E-FVTP)。根据Fedves联邦学习框... 联邦学习是一种可以在弱通信环境下有效解决数据孤岛问题的分布式机器学习方法。针对海上船舶轨迹实时预测问题,提出基于Fedves联邦学习框架与卷积神经网络-门控循环单元(CNN-GRU)模型的船舶轨迹预测算法(E-FVTP)。根据Fedves联邦学习框架,通过规范客户端数据集规模以及客户端正则项,在保持原有客户端数据特征的前提下,减小数据非独立同分布特征对全局模型的影响,加快收敛速度。面向海洋通信资源短缺场景,建立基于船舶自动识别系统(AIS)数据的CNN-GRU船舶轨迹预测模型,解决了船舶终端设备计算能力不足的问题。在MarineCadastre开源和舟山海洋船舶航行AIS数据集上的实验结果表明,E-FVTP在预测误差比集中式训练降低40%的情况下,收敛速度提升67%、通信代价降低76.32%,可实现复杂海洋环境中船舶轨迹的精确预测,保障海上交通安全。 展开更多
关键词 联邦学习 船舶轨迹预测 自动识别系统 深度学习 非独立同分布
下载PDF
面向异构环境的物联网入侵检测方法
15
作者 刘静 慕泽林 赖英旭 《通信学报》 EI CSCD 北大核心 2024年第4期114-127,共14页
为了解决物联网设备在资源受限和数据非独立同分布(Non-IID)时出现的训练效率低、模型性能差的问题,提出了一种个性化剪枝联邦学习框架用于物联网的入侵检测。首先,提出了一种基于通道重要性评分的结构化剪枝策略,该策略通过平衡模型的... 为了解决物联网设备在资源受限和数据非独立同分布(Non-IID)时出现的训练效率低、模型性能差的问题,提出了一种个性化剪枝联邦学习框架用于物联网的入侵检测。首先,提出了一种基于通道重要性评分的结构化剪枝策略,该策略通过平衡模型的准确率与复杂度来生成子模型下发给资源受限客户端。其次,提出了一种异构模型聚合算法,对通道采用相似度加权系数进行加权平均,有效降低了Non-IID数据在模型聚合中的负面影响。最后,网络入侵数据集BoT-IoT上的实验结果表明,相较于现有方法,所提方法能显著降低资源受限客户端的时间开销,处理速度提升20.82%,并且在Non-IID场景下,入侵检测的准确率提高0.86%。 展开更多
关键词 联邦学习 入侵检测 模型剪枝 非独立同分布
下载PDF
基于Logistic最优化鲁棒性的聚类联邦学习
16
作者 施玉倩 巫朝霞 《软件工程》 2024年第6期15-20,共6页
为了解决联邦学习中数据异构导致模型准确率下降的问题,提出了一种基于Logistic最优化鲁棒性的聚类联邦学习(Logistic-based More Robust Clustered Federated Learning,LMRCFL)方法,将具有相似数据分布的客户端分组到相同的集群中,不... 为了解决联邦学习中数据异构导致模型准确率下降的问题,提出了一种基于Logistic最优化鲁棒性的聚类联邦学习(Logistic-based More Robust Clustered Federated Learning,LMRCFL)方法,将具有相似数据分布的客户端分组到相同的集群中,不需要访问其私有数据,可为每个客户端集群训练模型;在目标函数中引入正则项更新本地损失函数,缓解Non-IID(非独立同分布)数据带来的客户端偏移问题,通过减小模型差异提升模型准确率。在CIFAR-10、fashion-MNIST、SHVN数据集上与其他联邦学习算法进行了对比,实验结果表明,LMRCFL算法在Non-IID数据分布下的准确率提高了8.13百分点~33.20百分点且具有鲁棒性。 展开更多
关键词 联邦学习 数据异构 聚类 非独立同分布 正则化
下载PDF
非独立同分布数据环境下的联邦学习激励机制设计
17
作者 李秋贤 周全兴 《现代信息科技》 2024年第22期30-35,共6页
在联邦学习环境中,非独立同分布(Non-IID)数据的存在对模型性能和用户参与度提出了严峻挑战。为了应对这些挑战,文章提出了一种基于博弈论和深度强化学习的新型激励机制,以提升非IID数据环境下的联邦学习效果。通过设计中央服务器和用... 在联邦学习环境中,非独立同分布(Non-IID)数据的存在对模型性能和用户参与度提出了严峻挑战。为了应对这些挑战,文章提出了一种基于博弈论和深度强化学习的新型激励机制,以提升非IID数据环境下的联邦学习效果。通过设计中央服务器和用户的收益函数,综合考虑通信成本、计算成本和本地模型精度,公平衡量用户贡献,并利用博弈论模型和深度强化学习算法优化用户参与策略。实验结果表明,所提出的激励机制显著提升了模型的精度和用户的参与度,有效地缓解了非IID数据分布对联邦学习性能的负面影响,从而增强了整个系统的性能和稳定性。 展开更多
关键词 联邦学习 博弈论 非独立同分布 激励机制 深度强化学习
下载PDF
去中心化场景下的隐私保护联邦学习优化方法
18
作者 侯泽超 董建刚 《计算机应用研究》 CSCD 北大核心 2024年第8期2419-2426,共8页
联邦学习的提出为跨数据孤岛的共同学习提供了新的解决方案,然而联邦节点的本地数据的非独立同分布(Non-IID)特性及中心化框架在参与方监管、追责能力和隐私保护手段上的缺失限制了其大规模应用。针对上述问题,提出了基于区块链的可信... 联邦学习的提出为跨数据孤岛的共同学习提供了新的解决方案,然而联邦节点的本地数据的非独立同分布(Non-IID)特性及中心化框架在参与方监管、追责能力和隐私保护手段上的缺失限制了其大规模应用。针对上述问题,提出了基于区块链的可信切片聚合策略(BBTSA)和联邦归因(FedAom)算法。FedAom引入归因思想,基于积分梯度法获取归因,从而定位影响模型决策行为的参数,分级考虑参数敏感性,在局部更新过程中保持和强化全局模型所学习到的关键知识,有效利用共享数据,从而缓解Non-IID问题。BBTSA基于区块链构建去中心化的联邦学习环境,允许联邦节点在无须中心化第三方的情况下,通过在参与方间交换噪声而非权重或梯度参数,基于合作树结构实现对参数的切片混淆,以保护节点隐私。在两种数据集上的不同分布条件下的验证结果显示,FedAom在大多数条件下相比基线方法在稳定性和收敛速度上都有显著提升。而BBTSA能够隐藏客户端的隐私参数,在不影响精度的情况下确保了训练过程的全程监控和隐私安全。 展开更多
关键词 联邦学习 区块链 隐私保护 非独立同分布 积分梯度 归因
下载PDF
基于相似度聚类和正则化的个性化联邦学习
19
作者 巫婕 钱雪忠 宋威 《计算机应用》 CSCD 北大核心 2024年第11期3345-3353,共9页
联邦学习(FL)应用场景中,常面临客户端数据异质性和不同任务需求需要提供个性化模型的问题,但现有的部分个性化联邦学习(PFL)算法中存在个性化与全局泛化的权衡问题,并且这些算法大多采用传统FL中根据客户端数据量加权聚合的方法,导致... 联邦学习(FL)应用场景中,常面临客户端数据异质性和不同任务需求需要提供个性化模型的问题,但现有的部分个性化联邦学习(PFL)算法中存在个性化与全局泛化的权衡问题,并且这些算法大多采用传统FL中根据客户端数据量加权聚合的方法,导致数据分布差异大的客户端模型性能变差,缺乏个性化聚合策略。针对上述问题,提出一种基于相似度聚类和正则化的PFL算法pFedSCR。pFedSCR算法在客户端本地更新阶段训练个性化模型和局部模型,其中:个性化模型在交叉熵损失函数中引入L2范数正则化,动态调整参考全局模型的程度,在汲取全局知识的基础上实现个性化;在服务端聚合阶段,根据客户端模型更新的相似度聚类,构建聚合权重矩阵,动态调整聚合权重,为不同客户端聚合个性化模型,让参数聚合策略具有个性化的同时解决数据异构问题。在CIFAR-10、MNIST、Fashion-MNIST 3个数据集上通过狄利克雷(Dirichlet)分布模拟了多种非独立同分布(Non-IID)数据场景,结果表明:pFedSCR算法在各种场景下的准确度和通信效率都优于经典算法FedProx和最新个性化算法FedPCL(Federated Prototype-wise Contrastive Learning)等联邦学习算法,最高可达到99.03%准确度。 展开更多
关键词 联邦学习 非独立同分布 余弦相似度 正则化 个性化联邦学习 隐私安全
下载PDF
基于结构增强的异质数据联邦学习模型正则优化算法 被引量:2
20
作者 张珉 梁美玉 +3 位作者 薛哲 管泽礼 潘圳辉 赵泽华 《模式识别与人工智能》 EI CSCD 北大核心 2023年第9期856-865,共10页
联邦学习中由于不同客户端本地数据分布异质,在本地数据集上训练的客户端模型优化目标与全局模型不一致,导致出现客户端漂移现象,影响全局模型性能.为了解决非独立同分布数据带来的联邦学习模型性能下降甚至发散的问题,文中从本地模型... 联邦学习中由于不同客户端本地数据分布异质,在本地数据集上训练的客户端模型优化目标与全局模型不一致,导致出现客户端漂移现象,影响全局模型性能.为了解决非独立同分布数据带来的联邦学习模型性能下降甚至发散的问题,文中从本地模型的通用性角度出发,提出基于结构增强的异质数据联邦学习模型正则优化算法.在客户端利用数据分布异质的本地数据进行训练时,以结构化的方式采样子网络,并对客户端本地数据进行数据增强,使用不同的增强数据训练不同的子网络学习增强表示,得到泛化性较强的客户端网络模型,对抗本地数据异质带来的客户端漂移现象,在联邦聚合中得到性能更优的全局模型.在CIFAR-10、CIFAR-100、ImageNet-200数据集上的大量实验表明,文中算法性能较优. 展开更多
关键词 联邦学习 非独立同分布(non-iid) 数据异质性 客户端漂移 正则化
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部