The propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov atmospheric turbulence are studied. The effects of non-Kolmogorov turbulence and beam nonparaxiality on the average intens...The propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov atmospheric turbulence are studied. The effects of non-Kolmogorov turbulence and beam nonparaxiality on the average intensity evolution and the beam-width spreading are stressed. It is found that the evolution of the average intensity distribution and the beam-width spreading depends on the generalized exponent factor, namely, on the non-Kolmogorov turbulence strength for the paraxial case. For the non-paraxial case the effect of the turbulence is negiigibl% while the beam-width spreading becomes very large. The analytical results are illustrated numerically and interpreted physically.展开更多
The propagation of vortex beam in atmospheric turbulence is of significant importance in theoretical study and practical applications. Based on extended Huygens-Fresnel integral and the Rytov approximation, the averag...The propagation of vortex beam in atmospheric turbulence is of significant importance in theoretical study and practical applications. Based on extended Huygens-Fresnel integral and the Rytov approximation, the average capacity of orbital angular momentum(OAM)-multiplexed Laguerre-Gaussian(LG) beam propagating through non-Kolmogorov turbulence is presented, and the analytical expression of spiral spectrum of LG beam has been deduced. The average capacity of FSO system is numerically calculated and the influence of exponent parameter, transmission height, structure constant, wavelength, outer scale and inner scale on average capacity are also analyzed in detail. Outcomes show that smaller structure constant, outer scale, higher transmission height and larger wavelength, inner scale are conducive to improve average capacity in different extent. Results acquires in this paper have potential application value in optical communication within non-Kolmogorov turbulence.展开更多
Non-classical polarization properties of dark hollow beams propagating through non-Kolmogorov turbulence are studied. The analytic equation for the polarization degree of the quantization partially coherent dark hollo...Non-classical polarization properties of dark hollow beams propagating through non-Kolmogorov turbulence are studied. The analytic equation for the polarization degree of the quantization partially coherent dark hollow beams is obtained.It is found that the polarization fluctuations of the quantization partially coherent dark hollow beams are dependent on the turbulence factors and beam parameters with the detection photon numbers. Furthermore, an investigation of the changes in the on-axis propagation point and off-axis propagation point shows that the polarization degree of the quantization partially coherent dark hollow beams presents oscillation for a short propagation distance and gradually returns to zero for a sufficiently long distance.展开更多
A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the exten...A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the extended Rytov approx- imation theory. Finite inner and outer scale parameters and high wave number "bump" are considered in the spectrum with a generalized spectral power law in the range of 3-4, instead of the fixed classical Kolmogorov power law of 11/3. The obtained SI expression is then used to analyze the effects of the spectral power law and the inner scale and outer scale on SI under various non-Kolmogorov fluctuation conditions. These results will be useful in future investigations of optical wave propagation through atmospheric turbulence.展开更多
It is found that in free space, the curves of the mean-squared beam width may each have a cross point at a certain propagation distance Zc. For Gaussian array beams, the analytical expressions of zc are derived. For t...It is found that in free space, the curves of the mean-squared beam width may each have a cross point at a certain propagation distance Zc. For Gaussian array beams, the analytical expressions of zc are derived. For the coherent com- bination, Zc is larger than that for the incoherent combination. However, in non-Kolmogorov turbulence, the cross point disappears, and the Gaussian array beams will have the same directionality in terms of the angular spread. Furthermore, a short propagation distance is needed to reach the same directionality when the generalized exponent is equal to 3.108. In particular, it is shown that the condition obtained in previous studies is not necessary for laser beams to have the same directionality in turbulence, which is explained physically. On the other hand, the relative average intensity distributions at the position where the Gaussian array beams have the same mean-squared beam width are also examined.展开更多
Based on the extended Huygens-Fresnel integral, analytical propagation expressions for the rms beam width and angular of partially coherent elegant Hermite cosh Caussian beam (EHChCB) in non-Kolmogorov turbulence ar...Based on the extended Huygens-Fresnel integral, analytical propagation expressions for the rms beam width and angular of partially coherent elegant Hermite cosh Caussian beam (EHChCB) in non-Kolmogorov turbulence are derived. The effects of exponent value, inner and outer scales of non-Kolmogorov turbulence on partially coherent EFIChGB are investigated quantitatively.展开更多
We model the effects of weak fluctuations on the probability densities and normalized powers of vortex models for the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbule...We model the effects of weak fluctuations on the probability densities and normalized powers of vortex models for the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbulence channel. We find that probability density of signal vortex models is a function of deviation from the center of the photon beam, and the farther away from the beam center it is, the smaller the probability density is. For fractional topological charge, the average probability densities of signal/crosstalk vortex modes oscillate along the beam radius except the half-integer order. As the beam waist of the photon source grows, the average probability density of signal and crosstalk vortex modes grow together. Moreover, the peak of the average probability density of crosstalk vortex modes shifts outward from the beam center as the beam waist gets larger. The results also show that the smaller index of non-Kolmogorov turbulence and the smaller generalized refractive-index structure parameter may lead to the higher average probability densities of signal vortex modes and lower average probability densities of crosstalk vortex modes. Lower-coherence radius or beam waist can give rise to less reduction of the normalized powers of the signal vortex modes, which is opposite to the normalized powers of crosstalk vortex modes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10874125)
文摘The propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov atmospheric turbulence are studied. The effects of non-Kolmogorov turbulence and beam nonparaxiality on the average intensity evolution and the beam-width spreading are stressed. It is found that the evolution of the average intensity distribution and the beam-width spreading depends on the generalized exponent factor, namely, on the non-Kolmogorov turbulence strength for the paraxial case. For the non-paraxial case the effect of the turbulence is negiigibl% while the beam-width spreading becomes very large. The analytical results are illustrated numerically and interpreted physically.
基金supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003)National Natural Science Foundation of China (Grant No. 61101005 and No. 61471051)Beijing Higher Education Young Elite Teacher Project
文摘The propagation of vortex beam in atmospheric turbulence is of significant importance in theoretical study and practical applications. Based on extended Huygens-Fresnel integral and the Rytov approximation, the average capacity of orbital angular momentum(OAM)-multiplexed Laguerre-Gaussian(LG) beam propagating through non-Kolmogorov turbulence is presented, and the analytical expression of spiral spectrum of LG beam has been deduced. The average capacity of FSO system is numerically calculated and the influence of exponent parameter, transmission height, structure constant, wavelength, outer scale and inner scale on average capacity are also analyzed in detail. Outcomes show that smaller structure constant, outer scale, higher transmission height and larger wavelength, inner scale are conducive to improve average capacity in different extent. Results acquires in this paper have potential application value in optical communication within non-Kolmogorov turbulence.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.61405205)
文摘Non-classical polarization properties of dark hollow beams propagating through non-Kolmogorov turbulence are studied. The analytic equation for the polarization degree of the quantization partially coherent dark hollow beams is obtained.It is found that the polarization fluctuations of the quantization partially coherent dark hollow beams are dependent on the turbulence factors and beam parameters with the detection photon numbers. Furthermore, an investigation of the changes in the on-axis propagation point and off-axis propagation point shows that the polarization degree of the quantization partially coherent dark hollow beams presents oscillation for a short propagation distance and gradually returns to zero for a sufficiently long distance.
文摘A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the extended Rytov approx- imation theory. Finite inner and outer scale parameters and high wave number "bump" are considered in the spectrum with a generalized spectral power law in the range of 3-4, instead of the fixed classical Kolmogorov power law of 11/3. The obtained SI expression is then used to analyze the effects of the spectral power law and the inner scale and outer scale on SI under various non-Kolmogorov fluctuation conditions. These results will be useful in future investigations of optical wave propagation through atmospheric turbulence.
基金supported by the National Natural Science Foundation of China(Grant No.61178070)the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province,China(Grant No.12TD008)
文摘It is found that in free space, the curves of the mean-squared beam width may each have a cross point at a certain propagation distance Zc. For Gaussian array beams, the analytical expressions of zc are derived. For the coherent com- bination, Zc is larger than that for the incoherent combination. However, in non-Kolmogorov turbulence, the cross point disappears, and the Gaussian array beams will have the same directionality in terms of the angular spread. Furthermore, a short propagation distance is needed to reach the same directionality when the generalized exponent is equal to 3.108. In particular, it is shown that the condition obtained in previous studies is not necessary for laser beams to have the same directionality in turbulence, which is explained physically. On the other hand, the relative average intensity distributions at the position where the Gaussian array beams have the same mean-squared beam width are also examined.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921000the Fundamental Research Funds of Shandong University under Grant No 2014TB018
文摘Based on the extended Huygens-Fresnel integral, analytical propagation expressions for the rms beam width and angular of partially coherent elegant Hermite cosh Caussian beam (EHChCB) in non-Kolmogorov turbulence are derived. The effects of exponent value, inner and outer scales of non-Kolmogorov turbulence on partially coherent EFIChGB are investigated quantitatively.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140128)the National Natural Science Foundation of Special Theoretical Physics(Grant No.11447174)the Fundamental Research Funds for the Central Universities(JUSRP51517)
文摘We model the effects of weak fluctuations on the probability densities and normalized powers of vortex models for the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbulence channel. We find that probability density of signal vortex models is a function of deviation from the center of the photon beam, and the farther away from the beam center it is, the smaller the probability density is. For fractional topological charge, the average probability densities of signal/crosstalk vortex modes oscillate along the beam radius except the half-integer order. As the beam waist of the photon source grows, the average probability density of signal and crosstalk vortex modes grow together. Moreover, the peak of the average probability density of crosstalk vortex modes shifts outward from the beam center as the beam waist gets larger. The results also show that the smaller index of non-Kolmogorov turbulence and the smaller generalized refractive-index structure parameter may lead to the higher average probability densities of signal vortex modes and lower average probability densities of crosstalk vortex modes. Lower-coherence radius or beam waist can give rise to less reduction of the normalized powers of the signal vortex modes, which is opposite to the normalized powers of crosstalk vortex modes.