Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cann...Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cannot be obtained by the current classical and/or non-classical Lie group approach. In this paper, we show that the conditional similarity reductions of the Jimbo-Miwa equation can be reobtained by adding an additional constraint equation to the original model to form a conditional equation system first and then solving the model system by means of the classical Lie group approach.展开更多
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie gr...The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.展开更多
The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries...The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.展开更多
Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the gr...Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.展开更多
The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corre...The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.展开更多
Based on the symbolic computational system Maple, the similarity reductions of a Lax pair for the (2+1 )-dimensional differential Sawada Kotera (SK) equation by the classical Lie point group method, are presented...Based on the symbolic computational system Maple, the similarity reductions of a Lax pair for the (2+1 )-dimensional differential Sawada Kotera (SK) equation by the classical Lie point group method, are presented. We obtain several interesting reductions. Comparing the reduced Lax pair's compatibility with the reduced SK equation under the same symmetry group, we find that the reduced Lax pairs do not always lead to the reduced SK equation. In general, the reduced equations are the subsets of the compatibility conditions of the reduced Lax pair.展开更多
We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of sim...We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of similarity solutions are obtained.展开更多
In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmeth...In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.展开更多
In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equ...In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1 + 1 )-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.展开更多
基金国家杰出青年科学基金,the Research Fund for the Doctoral Program of Higher Education of China
文摘Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cannot be obtained by the current classical and/or non-classical Lie group approach. In this paper, we show that the conditional similarity reductions of the Jimbo-Miwa equation can be reobtained by adding an additional constraint equation to the original model to form a conditional equation system first and then solving the model system by means of the classical Lie group approach.
基金supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institutethe National Natural Science Foundation of China under Grant Nos. 10735030 and 90503006
文摘The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.
基金Supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09the National Natural Science Foundation of China under Grant No. 10735030
文摘The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.
基金supported by National Natural Science Foundation of China under Grant Nos.10475055 and 90503006
文摘The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.
文摘Based on the symbolic computational system Maple, the similarity reductions of a Lax pair for the (2+1 )-dimensional differential Sawada Kotera (SK) equation by the classical Lie point group method, are presented. We obtain several interesting reductions. Comparing the reduced Lax pair's compatibility with the reduced SK equation under the same symmetry group, we find that the reduced Lax pairs do not always lead to the reduced SK equation. In general, the reduced equations are the subsets of the compatibility conditions of the reduced Lax pair.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475055 and 10547124 and partly by Shanghai Leading Academic Discipline Project under Grant No. T0401.Acknowledgments The authors would like to thank Prof. S.Y. Lou for his helpful discussions.
文摘We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of similarity solutions are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412+2 种基金National Natural Science Foundation of China under Grant No. 90718041Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734K.C. Wong Magna Fund in Ningbo University
文摘In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.
基金Supported by the National Natural Science Foundation of China under Grant No.10875106
文摘In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1 + 1 )-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.