The results of observation of different structuring techniques of thin metal layers applied in micro system technologies are presented. The Ti V getter films formed by magnetron sputtering have been explored using sca...The results of observation of different structuring techniques of thin metal layers applied in micro system technologies are presented. The Ti V getter films formed by magnetron sputtering have been explored using scanning electron and atomic-force microscopy, Brunauer-Emmett-Teller method, thermogravimetric analysis and fractal geometry. The film sorption capacity for hydrogen given by thermogravimetry was of 7.7 m3·Pa·g-1. To estimate the effective surface area, the fractal geometry tools were used and the calculated value of the specific surface area was about 155 m2/m3. The second object under investigation was a structure composed of micro- and mesoporous silicon and copper layer deposited electrochemically on the pore walls. Porous silicon when coupled with a reactive metal or alloy is expected to be an effective getter for micro system techniques. The use of porous silicon and specific conditions of depositions allows to form the structure of complex fractal type with a specific surface area of 167 m2/cm3.展开更多
Introduction The pumping performance of getter materials has becoming one of the hotspots in accelerator field.The recovery of pumping performance after air venting,also called aging effect,is important for applicatio...Introduction The pumping performance of getter materials has becoming one of the hotspots in accelerator field.The recovery of pumping performance after air venting,also called aging effect,is important for applications in accelerators.Materials and methods In this work,we investigated the aging effect of Ti-V-Zr-Hf-and Ti-V-Zr-coated copper tubular chambers,and the effect of initial air exposure time on the aging properties.The samples presented hierarchically micro/nano-structures and showed a featured aging curve,giving about 9 effective pumping cycles.Conclusion The pumping performance is inversely correlated with air exposure time suggesting that the getter coated cham-bers should be properly preserved before applied as a"pump".展开更多
A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation ...A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation effect is studied.It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz.Furthermore,the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency,leading to less degradation of the wave-front quality of the conditioned sample.The energy density of the CO 2 laser beam is introduced for selecting the mitigation parameters.The damage sites can be successfully mitigated by increasing the energy density in a ramped way.Finally,the laser-induced damage threshold(LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot(0.23 mm 2) and a large spot(3.14 mm 2),separately.It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material.展开更多
Non-evaporable getter(NEG)films are an integral part of many particle accelerators.These films provide conductance-free evenly distributed pumping,a low thermal outgassing rate,and a low photon-and electron-stimulated...Non-evaporable getter(NEG)films are an integral part of many particle accelerators.These films provide conductance-free evenly distributed pumping,a low thermal outgassing rate,and a low photon-and electron-stimulated desorption.These characteristics make it an ideal solution for resolving the non-uniform pressure distribution in conductance-limited narrow vacuum tubes.In this study,ternary Ti-Zr-V films were deposited on Si substrates and Ag-Cu(Ag 0.085 wt%)tubes with an inner diameter of 22 mm.All Ti-Zr-V films were prepared from an alloy target using the same DC magnetron sputtering parameters.The compositions and corresponding chemical bonding states were analyzed by X-ray photoelectron spectroscopy after activation at different temperatures.The test particle Monte Carlo(TPMC)method was used to measure the sticking probability of the Ti-Zr-V film based on pressure readings during gas injection.The results indicate that activation commences at temperatures as low as 150℃and Ti~0,Zr~0,and V~0 exist on the surface after annealing at 180℃for 1 h.Ti-Zr-V films can be fully activated at 180℃for 24 h.The CO sticking probability reaches 0.15,with a pumping capacity of 1 monolayer.展开更多
An accelerator storage ring needs clean ultrahigh vacuum.A TiZrV non-evaporable getter(NEG) film deposited on interior walls of the chamber can realize distributed pumping,effective vacuum improvement and reduced long...An accelerator storage ring needs clean ultrahigh vacuum.A TiZrV non-evaporable getter(NEG) film deposited on interior walls of the chamber can realize distributed pumping,effective vacuum improvement and reduced longitudinal pressure gradient.But accumulation of pollutants such as N_2 and O_2 will decrease the adsorption ability of the NEG,leading to a reduction of NEG lifetime.Therefore,an NEG thin film coated with a layer of Pd,which has high diffusion rate and absorption ability for H_2,can extend the service life of NEG and improve the pumping rate of H_2 as well.In this paper,with argon as discharge gas,a magnetron sputtering method is adopted to prepare TiZrV-Pd films in a long straight pipe.By SEM measurement,deposition rates of TiZrV-Pd films are analyzed under different deposition parameters,such as magnetic field strength,gas flow rate,discharge current,discharge voltage and working pressure.By comparing the experimental results with the simulation results based on Sigmund's theory,the Pd deposition rate C can be estimated by the sputtered depth.展开更多
To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.Th...To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.展开更多
Spray experiments of RP-3 jet fuel at non-evaporating and evaporating environments were studied on a constant volume spray chamber,and diffusive back-imaging technique was used to capture the transient spray developme...Spray experiments of RP-3 jet fuel at non-evaporating and evaporating environments were studied on a constant volume spray chamber,and diffusive back-imaging technique was used to capture the transient spray development processes.Spray tip penetration,projected spray area and cone angle of RP-3 jet fuel were derived from the spray development images,and compared to those of diesel fuel.It is observed that non-evaporating sprays of RP-3 jet fuel and diesel fuel do not exhibit significant differences,as their spray penetration distances,projected spray areas and spray cone angles are consistent at most test conditions.The evaporating sprays of RP-3 jet fuel produce shorter liquid-phase penetration distances and lower projected spray areas than those of diesel fuel,and these differences are particularly pronounced at low ambient temperatures.However,fuel effects on the evaporating spray cone angle are insignificant.Further,increased ambient density or ambient temperature shortens the liquid-phase spray penetration distance and reduces the liquid-phase spray area,and these effects are more pronounced for diesel fuel than RP-3 jet fuel.展开更多
Introduction Pd/Ti double-layer thin film as non-evaporable getter(NEG)was deposited by sublimation,and its activation temperature was as low as 100℃.The Pd film was deposited in situ after Ti deposition to ensure no...Introduction Pd/Ti double-layer thin film as non-evaporable getter(NEG)was deposited by sublimation,and its activation temperature was as low as 100℃.The Pd film was deposited in situ after Ti deposition to ensure no oxidization on Ti film.Pumping speed test and characterization method The pumping speed of the coated pipe was measured by a pumping speed test system.The sticking factor was calculated by Molflow.The surface morphology was observed by a scanning electron microscope(SEM).The chemical composition of the film was measured by an energy-dispersive spectrum inbuilt with the SEM.The crystalline structure of the film was measured using grazing incidence X-ray diffraction.Conclusion It was found that the pumping performance of the Pd/Ti film still remained high after 15 times of activation.The maximum pumping speed after heating at 100℃for 24 h was 1.1 L/s cm^(2)and 0.49 L/s cm^(2)for H_(2)and CO,respectively.It can be concluded that the key to reducing the activation temperature of NEG materials is to enhance the oxidation resistance of the surface of NEG.展开更多
文摘The results of observation of different structuring techniques of thin metal layers applied in micro system technologies are presented. The Ti V getter films formed by magnetron sputtering have been explored using scanning electron and atomic-force microscopy, Brunauer-Emmett-Teller method, thermogravimetric analysis and fractal geometry. The film sorption capacity for hydrogen given by thermogravimetry was of 7.7 m3·Pa·g-1. To estimate the effective surface area, the fractal geometry tools were used and the calculated value of the specific surface area was about 155 m2/m3. The second object under investigation was a structure composed of micro- and mesoporous silicon and copper layer deposited electrochemically on the pore walls. Porous silicon when coupled with a reactive metal or alloy is expected to be an effective getter for micro system techniques. The use of porous silicon and specific conditions of depositions allows to form the structure of complex fractal type with a specific surface area of 167 m2/cm3.
基金supported by High Energy Photon Source(HEPS),a major national science and technology infrastructureprovided by National Development and Reform Commission(Grant No.发改高技(2017)2173号)
文摘Introduction The pumping performance of getter materials has becoming one of the hotspots in accelerator field.The recovery of pumping performance after air venting,also called aging effect,is important for applications in accelerators.Materials and methods In this work,we investigated the aging effect of Ti-V-Zr-Hf-and Ti-V-Zr-coated copper tubular chambers,and the effect of initial air exposure time on the aging properties.The samples presented hierarchically micro/nano-structures and showed a featured aging curve,giving about 9 effective pumping cycles.Conclusion The pumping performance is inversely correlated with air exposure time suggesting that the getter coated cham-bers should be properly preserved before applied as a"pump".
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2008AA8040508)Foundation for Young Scholars of University of Electronic Science and Technology of China(Grant No.L08010401JX0806)+2 种基金the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.11076008)the Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2011J043)the Sichuan Provincial Young Scientists Foundation,China(Grant No.2010JQ0006)
文摘A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation effect is studied.It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz.Furthermore,the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency,leading to less degradation of the wave-front quality of the conditioned sample.The energy density of the CO 2 laser beam is introduced for selecting the mitigation parameters.The damage sites can be successfully mitigated by increasing the energy density in a ramped way.Finally,the laser-induced damage threshold(LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot(0.23 mm 2) and a large spot(3.14 mm 2),separately.It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material.
基金supported by the National Natural Science Foundation of China(Nos.11975226,11905219)the Fundamental Research Funds for the Central Universities(No.WK2310000071)the National Key Research and Development Program of China(2016YFA0402004).
文摘Non-evaporable getter(NEG)films are an integral part of many particle accelerators.These films provide conductance-free evenly distributed pumping,a low thermal outgassing rate,and a low photon-and electron-stimulated desorption.These characteristics make it an ideal solution for resolving the non-uniform pressure distribution in conductance-limited narrow vacuum tubes.In this study,ternary Ti-Zr-V films were deposited on Si substrates and Ag-Cu(Ag 0.085 wt%)tubes with an inner diameter of 22 mm.All Ti-Zr-V films were prepared from an alloy target using the same DC magnetron sputtering parameters.The compositions and corresponding chemical bonding states were analyzed by X-ray photoelectron spectroscopy after activation at different temperatures.The test particle Monte Carlo(TPMC)method was used to measure the sticking probability of the Ti-Zr-V film based on pressure readings during gas injection.The results indicate that activation commences at temperatures as low as 150℃and Ti~0,Zr~0,and V~0 exist on the surface after annealing at 180℃for 1 h.Ti-Zr-V films can be fully activated at 180℃for 24 h.The CO sticking probability reaches 0.15,with a pumping capacity of 1 monolayer.
基金supported by the National Natural Science Funds of China(No.11205155)Fundamental Research Funds for the Central Universities(WK2310000041)
文摘An accelerator storage ring needs clean ultrahigh vacuum.A TiZrV non-evaporable getter(NEG) film deposited on interior walls of the chamber can realize distributed pumping,effective vacuum improvement and reduced longitudinal pressure gradient.But accumulation of pollutants such as N_2 and O_2 will decrease the adsorption ability of the NEG,leading to a reduction of NEG lifetime.Therefore,an NEG thin film coated with a layer of Pd,which has high diffusion rate and absorption ability for H_2,can extend the service life of NEG and improve the pumping rate of H_2 as well.In this paper,with argon as discharge gas,a magnetron sputtering method is adopted to prepare TiZrV-Pd films in a long straight pipe.By SEM measurement,deposition rates of TiZrV-Pd films are analyzed under different deposition parameters,such as magnetic field strength,gas flow rate,discharge current,discharge voltage and working pressure.By comparing the experimental results with the simulation results based on Sigmund's theory,the Pd deposition rate C can be estimated by the sputtered depth.
基金The National Natural Science Foundations of China(No.51778133)the Transportation Science&Technology Project of Fujian Province(No.2017Y057)+1 种基金the China Railway Project(No.2017G007-C)Foundation of the China Scholarship Council(No.201906090163).
文摘To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.
基金supported by National Natural Science Foundation of China(Grant Nos.52022058 and 51776124)by Ministry of Education of China(Grant No.6141A020335)。
文摘Spray experiments of RP-3 jet fuel at non-evaporating and evaporating environments were studied on a constant volume spray chamber,and diffusive back-imaging technique was used to capture the transient spray development processes.Spray tip penetration,projected spray area and cone angle of RP-3 jet fuel were derived from the spray development images,and compared to those of diesel fuel.It is observed that non-evaporating sprays of RP-3 jet fuel and diesel fuel do not exhibit significant differences,as their spray penetration distances,projected spray areas and spray cone angles are consistent at most test conditions.The evaporating sprays of RP-3 jet fuel produce shorter liquid-phase penetration distances and lower projected spray areas than those of diesel fuel,and these differences are particularly pronounced at low ambient temperatures.However,fuel effects on the evaporating spray cone angle are insignificant.Further,increased ambient density or ambient temperature shortens the liquid-phase spray penetration distance and reduces the liquid-phase spray area,and these effects are more pronounced for diesel fuel than RP-3 jet fuel.
基金provided by National Development and Reform Commission(Grand No.发改高技(2017)2173号)
文摘Introduction Pd/Ti double-layer thin film as non-evaporable getter(NEG)was deposited by sublimation,and its activation temperature was as low as 100℃.The Pd film was deposited in situ after Ti deposition to ensure no oxidization on Ti film.Pumping speed test and characterization method The pumping speed of the coated pipe was measured by a pumping speed test system.The sticking factor was calculated by Molflow.The surface morphology was observed by a scanning electron microscope(SEM).The chemical composition of the film was measured by an energy-dispersive spectrum inbuilt with the SEM.The crystalline structure of the film was measured using grazing incidence X-ray diffraction.Conclusion It was found that the pumping performance of the Pd/Ti film still remained high after 15 times of activation.The maximum pumping speed after heating at 100℃for 24 h was 1.1 L/s cm^(2)and 0.49 L/s cm^(2)for H_(2)and CO,respectively.It can be concluded that the key to reducing the activation temperature of NEG materials is to enhance the oxidation resistance of the surface of NEG.