期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Support design method for deep soft-rock tunnels in non-hydrostatic high in-situ stress field
1
作者 ZHENG Ke-yue SHI Cheng-hua +3 位作者 ZHAO Qian-jin LEI Ming-feng JIA Chao-jun PENG Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2431-2445,共15页
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne... Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly. 展开更多
关键词 non-hydrostatic stress field high in-situ stress deep soft-rock tunnel squeezing pressure loosening pressure support design method
下载PDF
Improved Diurnal Cycle of Precipitation on Land in a Global Non-Hydrostatic Model Using a Revised NSAS Deep Convective Scheme
2
作者 Yifan ZHAO Xindong PENG +1 位作者 Xiaohan LI Siyuan CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1217-1234,共18页
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ... In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas. 展开更多
关键词 cumulus parameterization diurnal cycle of precipitation large-scale dynamic forcing global non-hydrostatic atmospheric model performance verification
下载PDF
Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model 被引量:3
3
作者 DAI Tie SHI Guangyu Teruyuki NAKAJIMA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期743-758,共16页
Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mea... Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mean all-sky aerosol optical thickness (AOT) at 550 nm, theAngstr/Sm Exponent (AE) based on AOTs at 440 and 870 nm, and the single scattering albedo (SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the AeroCom models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the'opposite is found over regions dominated by hydrophobic aerosol. 展开更多
关键词 aerosol optical properties non-hydrostatic icosahedral atmospheric model Moderate Resolution Imaging Spec-troradiometer Aerosol Robotic Network
下载PDF
Symmetry Analysis of Nonlinear Incompressible Non-Hydrostatic Boussinesq Equations 被引量:2
4
作者 刘萍 高晓楠 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第4期609-614,共6页
The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries... The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed. 展开更多
关键词 incompressible non-hydrostatic Boussinesq equations classical Lie group approach SYMMETRIES similarity reductions atmospheric gravity waves
下载PDF
Prediction of plastic zone size around circular tunnels in non-hydrostatic stress field 被引量:6
5
作者 Behnam Bagheri Fazlollah Soltani Hamid Mohammadi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期81-85,共5页
This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic... This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately. 展开更多
关键词 Plastic zone radius Convergence-confinement method non-hydrostatic condition Stress ratio
下载PDF
A Hybrid Finite-Volume and Finite Difference Scheme for Depth- Integrated Non-Hydrostatic Model 被引量:1
6
作者 YIN- Jing SUN Jia-wen +2 位作者 WANG Xing-gang YU Yong-hai SUN Zhao-chen 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期261-271,共11页
A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into... A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model. 展开更多
关键词 non-hydrostatic model SHOCK-CAPTURING wave breaking finite volume method MUSTA scheme
下载PDF
A Higher-Efficient Non-Hydrostatic Finite Volume Model for Strong Three-Dimensional Free Surface Flows and Sediment Transport 被引量:1
7
作者 LIU Xin MA Dian-guang ZHANG Qing-he 《China Ocean Engineering》 SCIE EI CSCD 2017年第6期736-746,共11页
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati... In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement. 展开更多
关键词 higher-efficient non-hydrostatic strong 3-D free surface flows sediment transport 3-D numerical model
下载PDF
New approach to incorporating the impacts of non-hydrostatic perturbations in atmospheric models 被引量:1
8
作者 ZHANG Fa-Bo WANG Bin LI Li-Juan 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第5期379-384,共6页
How to properly consider the impacts of non-hydrostatic perturbations is one of the challenging issues in developing non-hydrostatic dynamics solvers(NHDSs) for high-resolution atmospheric models. To overcome the dr... How to properly consider the impacts of non-hydrostatic perturbations is one of the challenging issues in developing non-hydrostatic dynamics solvers(NHDSs) for high-resolution atmospheric models. To overcome the drawbacks of current approaches to tackling this issue, this study analyzed the differences between hydrostatic dynamics solvers(HDSs) and their non-hydrostatic counterparts.The analysis then motivated a flexible approach to adjusting existing hydrostatic atmospheric models,especially those adopted in climate simulations for the impacts of non-hydrostatic perturbations.In this approach, the impacts of non-hydrostatic perturbations, reflecting the differences between HDSs and NHDSs, were encapsulated into a single term in the vertical momentum equation for the atmosphere. At each time step, this term was estimated by a separate sub-model, and then it was used to adjust the dynamics of the atmosphere. The adjustment was optional, and could be turned on and off flexibly by utilizing different initial conditions. The approach was illustrated using the Weather Research and Forecasting(WRF) model as an example, and was preliminarily validated by running the 3D baroclinic-wave test case in the model. Results showed that the modified dynamics solver produced simulation results that were very close to those given by the standard NHDS in the WRF model, implying that the approach was basically effective in capturing the non-hydrostatic features of the atmosphere. 展开更多
关键词 HYDROSTATIC non-hydrostatic dynamics solver WRF
下载PDF
Two-Layer Non-Hydrostatic Model for Generation and Propagation of Interfacial Waves
9
作者 S.R.Pudjaprasetya I.Magdalena 《China Ocean Engineering》 SCIE EI CSCD 2019年第1期65-72,共8页
When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant dens... When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill. 展开更多
关键词 INTERFACIAL WAVES two-layer non-hydrostatic MODEL DISPERSION RELATION
下载PDF
Numerical Analysis of the Nonlinear Parameterization of Waves in Currents over a Submerged Sill with a Non-Hydrostatic Model
10
作者 MA Xlaozhou MA Yuxiang +1 位作者 GAO Yunpeng DONG Guohai 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第4期689-696,共8页
An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using... An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using SWASH,a non-hydrostatic numerical wave model.The nonlinear parameters(i.e.,asymmetry,skewness,and kurtosis) are calculated,and the empirical formulas for these parameters are presented as a function of the local Ursell number based on the present numerical data measured.In the shoaling area of the submerged sill,the nonlinear characteristics of waves are more obvious when waves propagate in the same direction as the currents than when waves propagate in the opposite direction.Whereas nonlinear parameters grow with the strengthening of the following currents over the crest,they tend to decrease as the adverse current velocity increases over the crest area of the submerged sill. 展开更多
关键词 wave-current interaction shallow water nonlinear characteristic parameters non-hydrostatic water-current model
下载PDF
Non-hydrostatic modelling of regular wave transformation and current circulation in an idealized reef-lagoon-channel system
11
作者 Jian Shi Wei Liu +2 位作者 Jinhai Zheng Chi Zhang Xiangming Cao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期1-13,共13页
The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory e... The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory experiments,revealing that the model is valid in simulating wave transformation and currents over reefs.The effects of incident wave height,period,and reef flat water depth on the mean sea level and wave-driven currents are examined.Results show that the distributions of mean sea level and current velocities on the reef flat adjacent to the channel vary significantly from those in the area close to the side walls.From the wave averaged current field,an obvious alongshore flux flowing from the reef flat to the channel is captured.The flux from the reef flat composes the second source of the offshore rip current,while the first source is from the lagoon.A detailed momentum balance analysis shows that the alongshore current is mainly induced by the pressure gradient between the reef flat and the channel.In the lagoon,the momentum balances are between the pressure and radiation stress gradient,which drives flow towards the channel.Along the channel,the offshore current is mainly driven by the pressure gradient. 展开更多
关键词 non-hydrostatic model wave setup wave-induced current coral reef reef-lagoon-channel system
下载PDF
Vertical two-dimensional non-hydrostatic pressure model with single layer
12
作者 康玲 郭晓明 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第6期721-730,共10页
The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and un... The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and unstable, which makes them unsuitable for wider application. In this study, an efficient model with a single layer is developed. Decomposing the pressure into the hydrostatic and dynamic components and integrating the x-momentum equation from the bottom to the free surface can yield a horizontal momentum equation, in which the terms relevant to the dynamic pressure are discretized semi-implicitly. The convective terms in the vertical momentum equation are ignored, and the rest of the equation is approximated with the Keller-box scheme. The velocities expressed as the unknown dynamic pressure are substituted into the continuity equation, resulting in a tri-diagonal linear system solved by the Thomas algorithm. The validation of solitary and sinusoidal waves indicates that the present model can provide comparable results to the models with multiple layers but at much lower computation cost. 展开更多
关键词 vertical two-dimensional model non-hydrostatic pressure single layer Thomas algorithm WAVE
下载PDF
Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
13
作者 刘萍 李子良 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期83-90,共8页
The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The cal... The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system. 展开更多
关键词 (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations atmosphericgravity waves SYMMETRIES exact solutions
下载PDF
High-resolution tsunami hazard assessment for the Guangdong-Hong Kong-Macao Greater Bay Area based on a non-hydrostatic tsunami model
14
作者 Yifan ZHU Chao AN +2 位作者 Houyun YU Wei ZHANG Xiaofei CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2326-2351,共26页
The Guangdong-Hong Kong-Macao Greater Bay Area(GBA)is threatened by potential tsunami hazards from the Littoral Fault Zone(LFZ)and the Manila subduction zone(MSZ),and may suffer huge damage because of its dense popula... The Guangdong-Hong Kong-Macao Greater Bay Area(GBA)is threatened by potential tsunami hazards from the Littoral Fault Zone(LFZ)and the Manila subduction zone(MSZ),and may suffer huge damage because of its dense population,concentrated infrastructure,and low-lying coasts.Previous tsunami studies for the GBA made simple assumptions on the mechanisms of LFZ earthquakes,and used coarse bathymetry data in tsunami simulation,which limited the prediction of detailed tsunami hazard characteristics.In this paper,we develop a parallel dispersive tsunami model PCOMCOT to efficiently simulate dispersive,nonlinear,and breaking tsunami waves.We also construct large-scale and high-resolution bathymetry models for the GBA by correcting and integrating various data sources.Dynamic rupture simulation is performed for the LFZ to obtain a more reliable earthquake source model.We propose several representative earthquake scenarios for the LFZ and MSZ,and use PCOMCOT to calculate the resulting tsunami waves,currents,and inundation in the GBA.Our results indicate that if an M_(w)7.5 oblique-slip earthquake occurs in the LFZ off the Pearl River Estuary(PRE),the subsequent tsunami will primarily impact Hong Kong,causing maximum positive and negative waves of around 1 m and -2 m,respectively,along with slightly destructive currents(≥1.5 m/s).An M_(w)9.0 MSZ megathrust earthquake can lead to widespread inundation with>1 m depth on the outlying islands of Macao and in the urban areas of Hong Kong around the Victoria Harbour.Besides,it will also cause catastrophic tsunami currents along the narrow waterways in Hong Kong and Macao,and the spatial distribution of strong currents(≥3 m/s)shows a considerable discrepancy from the areas of serious inundation.Thus,more attention should be paid to the potential impacts of tsunami currents on the GBA. 展开更多
关键词 Tsunami hazards Inundation Tsunami currents non-hydrostatic model Guangdong-Hong Kong-Macao Greater Bay Area
原文传递
Impact of a Three-Dimensional Reference State in a Global Semi-Implicit Semi-Lagrangian Non-Hydrostatic Atmospheric Model on Yin–Yang Grids
15
作者 Yifan ZHAO Xindong PENG +3 位作者 Dehui CHEN Yerong FENG Xiaohan LI Juan GU 《Journal of Meteorological Research》 SCIE CSCD 2024年第5期901-922,共22页
The definition of a reference state close to the realistic atmosphere in an atmospheric model is essential for deriving prognostic deviations and improving numerical accuracy.In this study,a new dynamical framework al... The definition of a reference state close to the realistic atmosphere in an atmospheric model is essential for deriving prognostic deviations and improving numerical accuracy.In this study,a new dynamical framework allowing easy switching between a one-dimensional(1D)and a three-dimensional(3D)time-independent reference state is developed for the semi-implicit semi-Lagrangian solver in a global non-hydrostatic atmospheric model on Yin–Yang grids.The 3D reference state is introduced with consideration of additional horizontal gradient terms of referencestate terms,which is different from the 1D reference state.It is characterized by reduced magnitude of deviations,more accurate pressure gradient force,as well as alleviated numerical noise.Four idealized benchmark tests and multiple full-physics real-case forecasts are carried out to assess the impact of the 3D and 1D reference states.The 3D reference state shows significant advantages in the simulation of atmospheric transport and wave propagation in the idealized experiments.In the real-case forecasts,batched forecasts from June to August 2021 show a comprehensive improvement in medium-range prediction by using the 3D reference state.The new scheme achieves an enhanced prediction skill for large-scale circulation and extends the effective forecast period by 0.8 days in the Northern Hemisphere. 展开更多
关键词 semi-implicit semi-Lagrange three-dimensional reference state global non-hydrostatic atmospheric model linearized equation medium-range weather prediction
原文传递
THREE-DIMENSIONAL NON-HYDROSTATIC MODEL FOR FREE-SURFACE FLOWS WITH UNSTRUCTURED GRID 被引量:16
16
作者 AI Cong-fang JIN Sheng 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第1期108-116,共9页
The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed... The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement. 展开更多
关键词 unstructured grid non-hydrostatic k-ε turbulence model free surface flow
原文传递
Non-hydrostatic versus hydrostatic modelings of free surface flows 被引量:8
17
作者 张景新 SUKHODOLOV Alexander N. 刘桦 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第4期512-522,共11页
The hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers are often studied by solving shallow water equations under either hydrostatic or non-hydrostatic assumptions. Although the hydrostatic m... The hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers are often studied by solving shallow water equations under either hydrostatic or non-hydrostatic assumptions. Although the hydrostatic models are quite accurate and cost-efficient for many practical applications, there are situations when the fully hydrodynamic models are preferred despite a larger cost for computations. The present numerical model is implemented by the finite volume method (FVM) based on unstructured grids. The model can be efficiently switched between hydrostatic and non-hydrostatic modules. The case study shows that for waves pro- pagating along the bar a criterion with respect to the shallowness alone, the ratio between the depth and the wave length, is insufficient to warrant the performance of shallow flow equations with a hydrostatic approach and the nonlinearity in wave dynamics can be better accounted with a hydrodynamic approach. Besides the prediction of the flows over complex bathymetries, for instance, over asymmetrical dunes, by a hydrodynamic approach is shown to be superior in accuracy to the hydrostatic simulation. 展开更多
关键词 HYDROSTATIC non-hydrostatic TVD scheme non-orthogonal grid
原文传递
A SEMI-IMPLICIT 3-D NUMERICAL MODEL USING SIGAM-COORDINATE FOR NON-HYDROSTATIC PRESSURE FREE-SURFACE FLOWS 被引量:4
18
作者 HU De-chao FAN Bei-lin +1 位作者 WANG Guang-qian ZHANG Hong-wu 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第2期212-223,共12页
A 3-D numerical formulation is proposed on the horizontal Cartesian, vertical sigma-coordinate grid for modeling non-hydrostatic pressure flee-surface flows. The pressure decomposition technique and 0 semi-implicit me... A 3-D numerical formulation is proposed on the horizontal Cartesian, vertical sigma-coordinate grid for modeling non-hydrostatic pressure flee-surface flows. The pressure decomposition technique and 0 semi-implicit method are used, with the solution procedure being split into two steps. First, with the implicit parts of non-hydrostatic pressures excluded, the provisional velocity field and free surface are obtained by solving a 2-D Poisson equation. Second, the theory of the differential operator is employed to derive the 3-D Poisson equation for non-hydrostatic pressures, which is solved to obtain the non-hydrostatic pressures and to update the provisional velocity field. When the non-orthogonal sigma-coordinate transformation is introduced, additional terms come into being, resulting in a 15-diagonal, diagonally dominant but unsymmetric linear system in the 3-D Poisson equation for non-hydrostatic pressures. The Biconjugate Gradient Stabilized (BiCGstab) method is used to solve the resulting 3-D unsymmetric linear system instead of the conjugate gradient method, which can only be used for symmetric, positive-definite linear systems. Three test cases are used for validations. The successful simulations of the small-amplitude wave, a supercritical flow over a ramp and a turbulent flow in the open channel indicate that the new model can simulate well non-hydrostatic flows, supercritical flows and turbulent flows. 展开更多
关键词 3-D numerical model non-hydrostatic sigma-coordinate SEMI-IMPLICIT pressure-splitting
原文传递
Long-Term Integration of a Global Non-Hydrostatic Atmospheric Model on an Aqua Planet 被引量:6
19
作者 Xiaohan LI Xindong PENG 《Journal of Meteorological Research》 SCIE CSCD 2018年第4期517-533,共17页
A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin-Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yi... A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin-Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yin-Yang grid was coupled with the physical parameterization package of the operational version of GRAPES. A 3.5-yr integration was carried out on an aqua planet to assess the numerical performance of this non-hydrostatic mo- del relative to other models. Specific aspects of precipitation and general circulation under two different sea surface temperature (SST) conditions (CONTROL and FLAT) were analyzed. The CONTROL SST peaked at the equator. The FLAT SST had its maximum gradient at about 20~ latitude, giving a broad equatorial SST maximum in the trop- ics and flat profile approaching the equator. The tropical precipitation showed different propagation features in the CONTROL and FLAT simulations. The CONTROL showed tropical precipitation bands moving eastward with some envelopes of westward convective-scale disturbance. Less organized westward-propagating rainfall cells and bands were seen in the FLAT and the propagation of the tropical wave varied with the SST gradient. The Inter Tropical Convergence Zone (ITCZ), Hadley cell, and westerly jet core were weaker and more poleward as the SST profile flattened from the CONTROL to FLAT. The climatological structures simulated by GRAPES_YY, such as the distri- bution of precipitation and the large-scale circulation, fell within the bounds from other models. The stronger ITCZ precipitation, accompanied with stronger Hadley cells and convective heating in the CONTROL simulation, may be summed up as a result of stronger parameterized convection and the non-hydrostatic effects in GRAPES_YY. In ad- dition, mechanism of the zonal mean circulation maintaining is analyzed for the different SST patterns referring the transient eddy flux. 展开更多
关键词 non-hydrostatic model Yin-Yang grid physical parameterizations aqua planet experiment
原文传递
A new depth-integrated non-hydrostatic model for free surface flows 被引量:3
20
作者 GUO XiaoMing KANG Ling JIANG TieBing 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第4期824-830,共7页
A new depth-integrated model deploying a non-hydrostatic pressure distribution is presented.With the pressure divided into hydrostatic and dynamic components,the horizontal momentum equations were obtained by integrat... A new depth-integrated model deploying a non-hydrostatic pressure distribution is presented.With the pressure divided into hydrostatic and dynamic components,the horizontal momentum equations were obtained by integrating the Navier-Stokes equations from the bottom to the free surface.The vertical momentum equation,in which the convective and viscosity terms were omitted,was approximated by the Keller-box scheme.The model has two steps.First,the dynamic pressure gradient terms were discretized semi-implicitly and the other terms were in explicit scheme.Second,the velocities expressed as the unknown dynamic pressure were substituted into the continuity equation,resulting in a five-diagonal symmetric matrix linear system that was solved by the conjugate gradient method.The model was validated with the propagation of a solitary wave and sinusoidal wave,indicating that it can predict free surface flows well. 展开更多
关键词 depth-integrated free surface non-hydrostatic pressure WAVES
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部