期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Influence of counter electrode material during accelerated durability test of non-precious metal electrocatalysts in acidic medium 被引量:3
1
作者 李佳 刘会园 +2 位作者 吕洋 郭新闻 宋玉江 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1109-1118,共10页
Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be est... Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be established for the reliable evaluation of NPMEs. In this study, platinum and graphite counter electrodes were used to investigate the impact of counter electrode material on the accelerated durability testing (ADT) of NPMEs in acidic medium. Platinum used as the coun- ter electrode in a traditional three-electrode electrochemical cell was found to dissolve in acidic medium and re-deposit on NPME coated on the working electrode during ADT. Such re-deposition causes the oxygen reduction reaction (ORR) performance of NPMEs to remarkably improve, and thus will seriously mislead our judgment of NPMEs if we are unaware of it. The phenomenon can be avoided using a graphite counter electrode. 展开更多
关键词 non-precious metal electrocatalystPlatinum counter electrodeGraphite counter electrodeAccelerated durability testAcid medium
下载PDF
Synthesis of dual-doped non-precious metal electrocatalysts and their electrocatalytic activity for oxygen reduction reaction
2
作者 Li Xu Guoshun Pan +3 位作者 Xiaolu Liang Guihai Luo Chunli Zou Gaopan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期498-506,共9页
The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature f... The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction (ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry (CV) and rotating disk electrode (RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of -1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C-Sn-C, an additional beneficial factor for the ORR. 展开更多
关键词 non-precious metal electrocatalyst dual-dopant heat-treatment oxygen reduction reaction polymer electrolyte membrane fuel cell
下载PDF
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
3
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis electrocatalystS
下载PDF
Progress in metal oxide-based electrocatalysts for sustainable water splitting
4
作者 Aasiya S.Jamadar Rohit Sutar +2 位作者 Susmita Patil Reshma Khandekar Jyotiprakash B.Yadav 《Materials Reports(Energy)》 EI 2024年第3期19-34,共16页
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va... Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future. 展开更多
关键词 metal oxide HER OER electrocatalyst Overall water spilling
下载PDF
Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions 被引量:4
5
作者 Yansong Zhu Bingsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期610-628,共19页
The oxygen reduction/evolution reactions(ORR/OER) are a key electrode process in the development of electrochemical energy conversion and storage devices,such as metal-air batteries and reversible fuel cells.The searc... The oxygen reduction/evolution reactions(ORR/OER) are a key electrode process in the development of electrochemical energy conversion and storage devices,such as metal-air batteries and reversible fuel cells.The search for low-cost high-performance nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for ORR/OER alternatives to the widely-used noble metal-based catalysts is a research focus.This review aims to outline the opportunities and available options for these nanocarbon-based bifunctional electrocatalysts.Through discussion of some current scientific issues,we summarize the development and breakthroughs of these electrocatalysts.Then we provide our perspectives on these issues and suggestions for some areas in the further work.We hope that this review can improve the interest in nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for ORR/OER. 展开更多
关键词 Nanocarbon-based Oxygen reduction/evolution Bifunctional electrocatalyst metal-FREE non-precious metal
下载PDF
Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries 被引量:1
6
作者 Qixing Du Yanmei Gong +4 位作者 Muhammad Arif Khan Daixin Ye Jianhui Fang Hongbin Zhao Jiujun Zhang 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期16-34,共19页
Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunc... Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development. 展开更多
关键词 Surface/interface nanoengineering non-precious transition metal nitrides Zn-air batteries Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO_(2) to formate 被引量:2
7
作者 Runze Ye Jiaye Zhu +2 位作者 Yun Tong Dongmei Feng Pengzuo Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期180-188,I0007,共10页
Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity ... Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity at high current density is important for formate production,but remains challenging.Herein,the BiIn hybrid electrocatalyst,deriving from the Bi2O3/In2O3heterojunction(MOD-Biln),shows excellent catalytic performance for CO_(2)RR.The Faradaic efficiency of formate(FEHCOO-) can be realized over 90% at a wide potential window from-0.4 to-1.4 V vs.RHE,while the partial current density of formate(jHCOO-) reaches about 136.7 mA cm^(-2)at-1.4 V in flow cell without IR-compensation.In additio n,the MOD-Biln exhibits superior stability with high selectivity of formate at 100 mA cm^(-2).Systematic characterizations prove the optimized catalytic sites and interface charge transfer of MOD-Biln,while theoretical calculation confirms that the hybrid structure with dual Bi/In metal sites contribute to the optimal free energy of*H and*OCHO intermediates on MOD-Biln surface,thus accelerating the formation and desorption step of*HCOOH to final formate production.Our work provides a facile and useful strategy to develop highly-active and stable electrocatalysts for CO_(2)RR. 展开更多
关键词 metal oxide derivation Hybrid electrocatalyst Dual metal sites Electrocatalytic CO_(2)RR Formate product
下载PDF
Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions 被引量:1
8
作者 Yuke Song Wenfu Xie +1 位作者 Mingfei Shao Xue Duan 《Nano Materials Science》 EI CAS CSCD 2023年第2期161-176,共16页
Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high... Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field. 展开更多
关键词 Integrated electrocatalyst metal organic framework Structure-activity relationship Gas-involved reaction
下载PDF
Electrocatalytic activity of non-precious metal catalyst Co-N/C toward oxygen reduction reaction 被引量:3
9
作者 Yu Jun Si Chang Guo Chen +1 位作者 Wei Yin Hui Cai 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第8期983-986,共4页
Metallic cobalt was deposited on acetylene black to synthesize a composite Co/C by chemical reduction method.A platinumfree electrocatalyst Co-N/C(800) for oxygen reduction reaction(ORR) was synthesized by mixing ... Metallic cobalt was deposited on acetylene black to synthesize a composite Co/C by chemical reduction method.A platinumfree electrocatalyst Co-N/C(800) for oxygen reduction reaction(ORR) was synthesized by mixing the composite Co/C with urea and heat-treating at 800℃.The results from linear sweep voltammograms indicated that the Co-N/C(800) is active to ORR.Theβ-Co and cobalt oxides are not the active site of the catalyst Co-N/C.However,the existence of cobalt facilitated the modification of nitrogen to carbon black and led to the formation of active site of catalyst Co-N/C(800). 展开更多
关键词 Oxygen reduction reaction electrocatalyst non-precious metal Active site
下载PDF
A general synthetic strategy for N, P co-doped graphene supported metal-rich noble metal phosphides for hydrogen generation
10
作者 Jingwen Ma Xiang Li +6 位作者 Guangyu Lei Jun Wang Juan Wang Jian Liu Ming Ke Yang Li Chunwen Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期152-162,共11页
The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process o... The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts. 展开更多
关键词 Noble metal phosphides electrocatalyst Deoxyribonucleic acid Hydrogen evolution pH universal
下载PDF
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
11
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels Surface electronic structure ORR electrocatalyst Organic ligands
下载PDF
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation
12
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts Bimetallic catalysts Biomass valorization electrocatalyst synthesis
下载PDF
Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries 被引量:9
13
作者 Yuting Zhu Kaihang Yue +5 位作者 Chenfeng Xia Shahid Zaman Huan Yang Xianying Wang Ya Yan Bao Yu Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期164-192,共29页
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic framewo... Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic frameworks(MOFs)derivatives have been widely studied as oxygen electrocatalysts in ZABs.To date,many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs.In this review,the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed.The performance of these MOF-derived catalysts toward oxygen reduction,and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials,single-atom catalysts,metal cluster/carbon composites and metal compound/carbon composites.Moreover,we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship.Finally,the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs. 展开更多
关键词 metal-organic framework Non-noble metal Oxygen electrocatalysts Air electrode Zinc-air batteries
下载PDF
Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media 被引量:6
14
作者 Samarjeet Singh Siwal Wenqiang Yang Qibo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期113-133,共21页
The realization of efficient oxygen evolution reaction(OER) is critical to the development of multiple sustainable energy conversion and storage technologies, especially hydrogen production via water electrolysis. To ... The realization of efficient oxygen evolution reaction(OER) is critical to the development of multiple sustainable energy conversion and storage technologies, especially hydrogen production via water electrolysis. To achieve the massive application of hydrogen energy and mass-scale hydrogen production from water splitting drives the pursuit of competent precious-metal-free electrocatalysts in acidic media, where the hydrogen evolution reaction(HER) is more facilitated. However, the development of high-efficient and acid-stable OER electrocatalysts, which are robust to function stably at high oxidation potentials in the acidic electrolyte, remains a great challenge. This article contributes a focused, perceptive review of the up-to-date approaches toward this emerging research field. The OER reaction mechanism and fundamental requirements for oxygen evolution electrocatalysts in acid are introduced. Then the progress and new discoveries of precious-metal-free active materials and design concepts with regard to the improvement of the intrinsic OER activity are discussed. Finally, the existing scientific challenges and the outlooks for future research directions to the fabrication of emerging, earth-abundant OER electrocatalysts in acid are pointed out. 展开更多
关键词 electrocatalystS Non-noble metals Hydrogen production Water oxidation Acidic media
下载PDF
Modification strategies on transition metal-based electrocatalysts for efficient water splitting 被引量:5
15
作者 Yaotian Yan Pengcheng Wang +2 位作者 Jinghuang Lin Jian Cao Junlei Qi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期446-462,共17页
Electrocatalytic water splitting driven by electrocatalysts is recognized as a promising strategy to generate clean hydrogen fuel.Searching and constructing high-efficient and low-cost electrocatalysts is vital in the... Electrocatalytic water splitting driven by electrocatalysts is recognized as a promising strategy to generate clean hydrogen fuel.Searching and constructing high-efficient and low-cost electrocatalysts is vital in the practical applications of electrocatalytic water splitting.Although transition metal-based materials have been considered as promising electrocatalysts,the satisfactory activities are usually not built on the bulk materials,but strongly relying on elaborately designing these electrocatalysts.Herein,the recent theoretical and experimental progress on modification strategies to improve the intrinsic activities is summarized,especially including element doping,phase engineering,structure cooperation,interface engineering,vacancy engineering,strain engineering and self-functionalization.Finally,the future opportunities and challenges on these modification strategies are also proposed.Overall,it is anticipated that these modification strategies offer some new understandings on rationally constructing non-noble electrocatalysts for efficient electrocatalytic water splitting. 展开更多
关键词 electrocatalystS MODIFICATION Intrinsic activity Active sites Transition metal
下载PDF
Nonprecious metal's graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications 被引量:19
16
作者 Asad Ali Pei Kang Shen 《Carbon Energy》 CAS 2020年第1期99-121,共23页
Sustainable production of hydrogen is a hopeful requirement of a strategic future economy and development.Water splitting driven by electricity is a favorable pathway for renewable hydrogen production.This critical re... Sustainable production of hydrogen is a hopeful requirement of a strategic future economy and development.Water splitting driven by electricity is a favorable pathway for renewable hydrogen production.This critical review highlighted recent efforts toward the development of the nanoscale synthesis of nonprecious metal's graphene-supported electrocatalysts and their electrocatalytic features for remarkable hydrogen evolution reaction(HER).Different essential nonprecious metal's graphene-supported electrocatalysts,including metal carbides,sulfides,phosphides,selenides,oxides,and nitrides are reviewed.In the exploration,attention is given to the strategies of activity enhancement,the synthetic approach,and the composition/structure electrocatalytic-performance relationship of these HER electrocatalysts.We are hopeful that this review confers a new momentum to the rational design of remarkable performance nonprecious metal's graphenesupported electrocatalysts and comprehensive guide for researchers to utilize the subject catalysts in regular water splitting. 展开更多
关键词 GRAPHENE hydrogen evolution reaction nonprecious metal electrocatalysts water splitting
下载PDF
Metal‐organic frameworks‐derived novel nanostructured electrocatalysts for oxygen evolution reaction 被引量:9
17
作者 Xinyu Qin Dongwon Kim Yuanzhe Piao 《Carbon Energy》 CAS 2021年第1期66-100,共35页
Engineering cost‐effective catalysts with exceptional performance for theelectrochemical oxygen evolution reaction (OER) remains crucial for theaccelerated development of renewable energy techniques, and especially s... Engineering cost‐effective catalysts with exceptional performance for theelectrochemical oxygen evolution reaction (OER) remains crucial for theaccelerated development of renewable energy techniques, and especially so,given the pivotal role of OER in water electrolysis. On the basis of the metalnodes (clusters) and organic linkers, metal‐organic frameworks (MOFs) andtheir derivatives are rapidly gaining ground in the fabrication of electrocatalysts,with promising catalytic activity and sound durability in OER, thanksto their controllable pore structures, abundant unsaturated active sites of metalion, extensive specific surface area, as well as easily functionalized/modifiedsurfaces. This review presents an in‐depth understanding of the establishedprogress of MOFs‐derived materials for OER electrocatalysis. The materialdesigning strategies of the pristine, monometallic, and multimetallic MOFsbasedcatalysts are summarized to indicate the infinite possibilities of themorphology and the composition of MOF‐derived materials. While emphasisis laid on the essential features of MOF‐derived materials for the electrocatalysisof the corresponding reactions, insights about the applications in OERare discussed. Finally, this paper is concluded by presenting challengesand perspectives for MOF‐derived materials’ future applications in OERelectrocatalysis. 展开更多
关键词 electrocatalyst high‐performance metal‐organic frameworks oxygen evolution reaction
下载PDF
Recent Progress of Metal Organic Frameworks-Based Electrocatalysts for Hydrogen Evolution,Oxygen Evolution,and Oxygen Reduction Reaction 被引量:2
18
作者 Yaling Jia Ziqian Xue +1 位作者 Yinle Li Guangqin Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1084-1102,共19页
Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,... Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,abundant active sites,and plentiful pores.Notably,satisfactory electrocatalytic performance has been achieved by MOFs-based electrocatalysts comparable to traditional electrocatalysts.State-of-the-art works about the MOFs-based electrocatalysts for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and ORR were summarized in this review.This review comprises a series of modifying strategies of MOFs and their derivatives,from aspects of structure,composition,and morphology.Furthermore,the active sites and functional mechanisms’recognition are involved in this review expecting to provide reference for rationally designing efficient electrocatalysts.At last,the current status,challenges,and perspectives of MOFs-based electrocatalysts are also discussed. 展开更多
关键词 electrocatalystS hydrogen evolution metal organic frameworks oxygen evolution oxygen reduction reaction
下载PDF
Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction 被引量:5
19
作者 Hang Su Xiaodong Pan +2 位作者 Suqin Li Hao Zhang Ruqiang Zou 《Carbon Energy》 SCIE CSCD 2023年第6期21-44,共24页
Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engin... Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engineering strategies,including intrinsic defects(atomic vacancy and active edges)and extrinsic defects(metal doping,nonmetal doping,and hybrid doping),which have been utilized to obtain advanced TMD-based electrocatalysts.Based on theoretical simulations and experimental results,the electronic structure,intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed.Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties.Furthermore,current opportunities and challenges for mechanical investigations and applications of defective TMD-based catalysts are presented.The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high-efficiency TMD-based electrocatalysts. 展开更多
关键词 defect engineering electrocatalystS hydrogen evolution reaction(HER) transition metal dichalcogenides
下载PDF
Recent update on electrochemical CO_(2)reduction catalyzed by metal sulfide materials
20
作者 An Niza El Aisnada Masahiro Miyauchi +1 位作者 Min Liu Akira Yamaguchi 《Materials Reports(Energy)》 2023年第2期103-123,I0003,共22页
Seeking and developing efficient CO_(2)reduction reaction(CO_(2)RR)electrocatalysts is a hot topic in this era of global warming.Among material candidates for sustainable and cost-effective applications,metal sulfides... Seeking and developing efficient CO_(2)reduction reaction(CO_(2)RR)electrocatalysts is a hot topic in this era of global warming.Among material candidates for sustainable and cost-effective applications,metal sulfides have attracted attention as promising nature-inspired materials due to multiple adsorption sites which are enhanced by the covalent character of sulfur.This article summarizes the current status regarding the utilization and development of metal sulfide materials as CO_(2)RR electrocatalysts.First,the research background and basic principles of electrochemical CO_(2)RR are introduced.Next,an overview of the main obstacles to developing efficient CO_(2)RR electrocatalysts is presented.The section is followed by a summary of the empirical evidence supporting the application of metal sulfides as CO_(2)RR electrocatalysts beside nature-inspired motivation.The summary of synthesis methods of various metal sulfides is also presented.Furthermore,the paper also highlights the recent works on metal sulfide as efficient CO_(2)RR including the undertaking strategy on the activity enhancement,and finally,discusses the challenges and prospect of metal sulfides-based CO_(2)RR electrocatalysts.Despite recent efforts,metal sulfides remain relatively unexplored as materials for CO_(2)RR electrocatalytic applications.Therefore,this review aims to stimulate novel ideas and research for improved catalyst designs and functionality. 展开更多
关键词 metal sulfides electrocatalyst Electrochemical CO_(2)reduction Bi-metal sulfides Active site Defect engineering SELECTIVITY Faradaic efficiency
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部