Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
The Laplace transform is a very useful tool for the solution of problems involving an impulsive excitation, usually represented by the Dirac delta, but it does not work in nonlinear problems. In contrast with this, th...The Laplace transform is a very useful tool for the solution of problems involving an impulsive excitation, usually represented by the Dirac delta, but it does not work in nonlinear problems. In contrast with this, the parametric representation of the Dirac delta presented here works both in linear and nonlinear problems. Furthermore, the parametric representation converts the differential equation of a problem with an impulsive excitation into two equations: the first equation referring to the impulse instant (absent in the conventional solution) and the second equation referring to post-impulse time. The impulse instant equation contains fewer terms than the original equation and the impulse is represented by a constant, just as in the Laplace transform, the post-impulse equation is homogeneous. Thus, the solution of the parametric equations is considerably simpler than the solution of the original equation. The parametric solution, involving the equations of both the dependent and independent variables in terms of the parameter, is readily reconverted into the usual equation in terms of the dependent and independent variables only. This parametric representation may be taught at an earlier stage because the principle on which it is based is easily visualized geometrically and because it is only necessary to have a knowledge of elementary calculus to understand it and use it.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
The multiple solutions for one-dimensional cubic nonlinear problem u'+u^3=0,u(0)=u(π)=0are computed,on the basis of the eigenpairs of-φ'_k=λ_(kφk),k=1,2,3....There exist two nonzero solutions±u_k corr...The multiple solutions for one-dimensional cubic nonlinear problem u'+u^3=0,u(0)=u(π)=0are computed,on the basis of the eigenpairs of-φ'_k=λ_(kφk),k=1,2,3....There exist two nonzero solutions±u_k corresponding to each k,and their Morse index MI(k) for 1(?)k(?)20 is to be exactly determined.It isshown by the numerical results that MI(k)(?)k.展开更多
Using the method of matched asymptotic expansions, the shock solutions for a class of singularly perturbed nonlinear problems are discussed. The relation of the shock solutions and their boundary conditions is obtaine...Using the method of matched asymptotic expansions, the shock solutions for a class of singularly perturbed nonlinear problems are discussed. The relation of the shock solutions and their boundary conditions is obtained. And the known results are generalized.展开更多
A class of fourth order singularly perturbed boundary value problems are studied. The existence of solution and its uniformly valid asymptotic estimation are obtained.
In this paper,the shock behaviors of solution to a class of nonlinear singularly perturbed problems are considered.Under some appropriate conditions,the outer and interior solutions to the original problem are constru...In this paper,the shock behaviors of solution to a class of nonlinear singularly perturbed problems are considered.Under some appropriate conditions,the outer and interior solutions to the original problem are constructed.Using the special limit and matching theory,the expressions of solutions with the shock behavior near the boundary and some interior points are given and the domain for boundary values is obtained.展开更多
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower soluti...In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.展开更多
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required...In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required at each iteration, thus avoiding the need for solving a quadratic subproblem with a trust region bound. Under some conditions, it is proven that this algorithm is globally and locally superlinear convergent. The limited numerical examples show its efficiency.展开更多
We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
Based on the eigensystem {λj,φj}of -Δ, the multiple solutions for nonlinear problem Δu + f(u) = 0 in Ω, u = 0 on (?)Ω are approximated. A new search-extension method (SEM) is proposed, which consists of three al...Based on the eigensystem {λj,φj}of -Δ, the multiple solutions for nonlinear problem Δu + f(u) = 0 in Ω, u = 0 on (?)Ω are approximated. A new search-extension method (SEM) is proposed, which consists of three algorithms in three level subspaces. Numerical experiments for f(u) = u3 in a square and L-shape domain are presented. The results show that there exist at least 3k - 1 distinct nonzero solutions corresponding to each κ-ple eigenvalue of -Δ (Conjecture 1).展开更多
In this paper, we present a new homotopy method for the nonlinear complementarity problems. Without the regularity or non-singulary assumptions for▽F(x), we prove that our homotopy equations have a bounded solution c...In this paper, we present a new homotopy method for the nonlinear complementarity problems. Without the regularity or non-singulary assumptions for▽F(x), we prove that our homotopy equations have a bounded solution curve. The numerical tests confirm the efficiency of our proposed method.展开更多
The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. Th...The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.展开更多
Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the...Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the type of constraint was discussed. All its six types of transition sets are derived, in which three types are newly found and a method is proposed for analyzing the constrained bifurcation.展开更多
Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical p...Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.展开更多
This paper studies the nonlinear mixed problem for a class of symmetric hyperbolic systems with the boundary condition satisfying the dissipative condition about discontinuous data in higher dimension spaces, establis...This paper studies the nonlinear mixed problem for a class of symmetric hyperbolic systems with the boundary condition satisfying the dissipative condition about discontinuous data in higher dimension spaces, establishes the local existence theorem by using the method of a prior estimates, and obtains the structure of singularities of the solutions of such problems.展开更多
The nonlinear Riemann problems were converted into nonlinear singular integral equ ations and the existence of the solution for the problem was proved by means of contract principle.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
文摘The Laplace transform is a very useful tool for the solution of problems involving an impulsive excitation, usually represented by the Dirac delta, but it does not work in nonlinear problems. In contrast with this, the parametric representation of the Dirac delta presented here works both in linear and nonlinear problems. Furthermore, the parametric representation converts the differential equation of a problem with an impulsive excitation into two equations: the first equation referring to the impulse instant (absent in the conventional solution) and the second equation referring to post-impulse time. The impulse instant equation contains fewer terms than the original equation and the impulse is represented by a constant, just as in the Laplace transform, the post-impulse equation is homogeneous. Thus, the solution of the parametric equations is considerably simpler than the solution of the original equation. The parametric solution, involving the equations of both the dependent and independent variables in terms of the parameter, is readily reconverted into the usual equation in terms of the dependent and independent variables only. This parametric representation may be taught at an earlier stage because the principle on which it is based is easily visualized geometrically and because it is only necessary to have a knowledge of elementary calculus to understand it and use it.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金Supported by The Special Funds of State Major Basic Research Projects (No.G1999032804)National Natural Science Foundation of China (No.19331021)Mathematical Tianyuan Youth Foundation of National Natural Science Foundation of China (No.10226016)
文摘The multiple solutions for one-dimensional cubic nonlinear problem u'+u^3=0,u(0)=u(π)=0are computed,on the basis of the eigenpairs of-φ'_k=λ_(kφk),k=1,2,3....There exist two nonzero solutions±u_k corresponding to each k,and their Morse index MI(k) for 1(?)k(?)20 is to be exactly determined.It isshown by the numerical results that MI(k)(?)k.
基金Supported by the National Natural Science Foundation of China(10471039) Supported by the E-Institutes of Shanghai Municipal Education Commission(E03004) Supported by the Natural Science Foundation of Zhejiang Province(Y606268)
文摘Using the method of matched asymptotic expansions, the shock solutions for a class of singularly perturbed nonlinear problems are discussed. The relation of the shock solutions and their boundary conditions is obtained. And the known results are generalized.
文摘A class of fourth order singularly perturbed boundary value problems are studied. The existence of solution and its uniformly valid asymptotic estimation are obtained.
基金Supported by the National Natural Science Foundation of China (No.11071205)the Natural Science Foundation of Zhejiang (No.Y6090164)
文摘In this paper,the shock behaviors of solution to a class of nonlinear singularly perturbed problems are considered.Under some appropriate conditions,the outer and interior solutions to the original problem are constructed.Using the special limit and matching theory,the expressions of solutions with the shock behavior near the boundary and some interior points are given and the domain for boundary values is obtained.
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
文摘In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
基金Supported by the Natural Science Foundation of Hainan Province(80552)
文摘In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required at each iteration, thus avoiding the need for solving a quadratic subproblem with a trust region bound. Under some conditions, it is proven that this algorithm is globally and locally superlinear convergent. The limited numerical examples show its efficiency.
基金Supported by the National Natural Science Foundation of China (No. 202001036)
文摘We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
基金This work was supported by the Special Funds of the State Major Basic Research Projects(Grant No.G1999032804)the National Natural Science Foundation of China(Grant No.10471038).
文摘Based on the eigensystem {λj,φj}of -Δ, the multiple solutions for nonlinear problem Δu + f(u) = 0 in Ω, u = 0 on (?)Ω are approximated. A new search-extension method (SEM) is proposed, which consists of three algorithms in three level subspaces. Numerical experiments for f(u) = u3 in a square and L-shape domain are presented. The results show that there exist at least 3k - 1 distinct nonzero solutions corresponding to each κ-ple eigenvalue of -Δ (Conjecture 1).
文摘In this paper, we present a new homotopy method for the nonlinear complementarity problems. Without the regularity or non-singulary assumptions for▽F(x), we prove that our homotopy equations have a bounded solution curve. The numerical tests confirm the efficiency of our proposed method.
基金Supported by the National Natural Science Foundation of China (40174003)
文摘The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
文摘Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the type of constraint was discussed. All its six types of transition sets are derived, in which three types are newly found and a method is proposed for analyzing the constrained bifurcation.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)Shanghai Leading Academic Discipline Project (No. J50101)
文摘Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.
文摘This paper studies the nonlinear mixed problem for a class of symmetric hyperbolic systems with the boundary condition satisfying the dissipative condition about discontinuous data in higher dimension spaces, establishes the local existence theorem by using the method of a prior estimates, and obtains the structure of singularities of the solutions of such problems.
文摘The nonlinear Riemann problems were converted into nonlinear singular integral equ ations and the existence of the solution for the problem was proved by means of contract principle.