Let k be a positive integer,let h be a holomorphic function in a domain D,h■0and let F be a family of nonvanishing meromorphic functions in D.If each pair of functions f and q in F,f^((k)) and g^((k)) share h in D,th...Let k be a positive integer,let h be a holomorphic function in a domain D,h■0and let F be a family of nonvanishing meromorphic functions in D.If each pair of functions f and q in F,f^((k)) and g^((k)) share h in D,then F is normal in D.展开更多
In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based o...In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based on the theorems.展开更多
Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a w...Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.展开更多
We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a poly...In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.展开更多
In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplic...In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplicity at least k.Suppose that for each f∈F,f(z)and f(k)(z)share the set{a,b,c}.Then F is a normal family in D.展开更多
We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods...We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.展开更多
This paper studied the connection between normal family and unicity, and proved some results on unicity of entire functions. Mostly, it was proved: Let f be a nonconstant entire function, and let a, c be two nonzero ...This paper studied the connection between normal family and unicity, and proved some results on unicity of entire functions. Mostly, it was proved: Let f be a nonconstant entire function, and let a, c be two nonzero complex numbers. If E(a,f)=E(a,f' ), and f"(z)=c whenever f' (z)=a, then f(z)=Ae^(cz)/u +(ac-a^2)/c.The proof uses the theory of normal families in an essential way.展开更多
We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a...We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a positive integer. If for every f∈ F, i) the zeros of f(z) have a multiplicity of at least k+ 1, and ii) E^-f(k)(S) lohtain in E^-f(S), then F is normal on .4. At the same time, the corresponding results of normal function are also proved.展开更多
A normal theorem concerning meromorphic functions sharing values was proved with the method of Zalcman- Pang.The theorem is as follows. If for each f in F, all zeros of f-a have multiplicity at least k (k≥2), f and i...A normal theorem concerning meromorphic functions sharing values was proved with the method of Zalcman- Pang.The theorem is as follows. If for each f in F, all zeros of f-a have multiplicity at least k (k≥2), f and its k-th derivative function share a, and if f=b whenever its k-th derivative equal b, then F is normal in D. This theorem improved the result of Chen and Fang [Chen HH, Fang ML, Shared values and normal families of meromorphic functions, Journal of Mathematical Analysis and Applications, 2001, 260: 124-132].展开更多
In this paper,we study the normality criterion for families of meromorphic functions concerning shared set depending on f∈F.Let F be a family of meromorphic functions in the unit disc A.For each f∈F,all zeros of f h...In this paper,we study the normality criterion for families of meromorphic functions concerning shared set depending on f∈F.Let F be a family of meromorphic functions in the unit disc A.For each f∈F,all zeros of f have multiplicity at least 2 and there exist nonzero complex numbers b_f,c_f satisfying(i) b_f/c_f is a constant;(ii) min{σ(0,b_f),σ(0,c_f),σ(b_f,c_f)} ≥m for some m > 0;(iii) E_f'(S_f)■ E_f(S_f),where S_f = {b_f,c_f}.Then F is normal in A.At the same time,the corresponding results are also proved.The results in this paper improve and generalize the related results展开更多
In theorem LP [1], Liu proves the theorem when <em>N</em> = 2, but it can’t be ex-tended to the general case in his proof. So we consider the condition that the families of holomorphic curves share eleven...In theorem LP [1], Liu proves the theorem when <em>N</em> = 2, but it can’t be ex-tended to the general case in his proof. So we consider the condition that the families of holomorphic curves share eleven hyperplanes, and we get the theorem 1.1.展开更多
In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential pol...In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.展开更多
Let F be a family of meromorphic functions on the unit disc A. Let a be a non-zero finite value and k be a positive integer. If for every f ∈ F,(i) f and f(k) share α ;(ii) the zeros of f(z) are of multiplicity ≥k ...Let F be a family of meromorphic functions on the unit disc A. Let a be a non-zero finite value and k be a positive integer. If for every f ∈ F,(i) f and f(k) share α ;(ii) the zeros of f(z) are of multiplicity ≥k + 1 , then F is normal on △.We also proved corresponding results on normal functions and a uniqueness theorem of entire functions .展开更多
This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
This paper continues the researches of Yang Lo and others, and gives a further generalization of Gu’s criterion for the normality of a family of meromorphic functions.
In this paper, general modular theorems are obtained for meromorphic functions and their derivatives. The related criteria for normality of families of meromorphic functions are proved.
Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^...Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^λz + a(λ - 1)/)λ, where C and ), are nonzero constants with λ^k-1 = 1. The proof is based on the Wiman-Vlairon theory and the theory of normal families in an essential way.展开更多
Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of h...Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.展开更多
We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose dif...We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose differential polynomials share a non-zero value. Our theorems improve some previous results.展开更多
基金Supported by the National Natural Science Foundation of China(l1371149, 11301076, 11201219)
文摘Let k be a positive integer,let h be a holomorphic function in a domain D,h■0and let F be a family of nonvanishing meromorphic functions in D.If each pair of functions f and q in F,f^((k)) and g^((k)) share h in D,then F is normal in D.
文摘In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based on the theorems.
基金The first author is supported in part by the Post Doctoral Fellowship at Shandong University.The second author is supported by the national Nature Science Foundation of China (10371065).
文摘Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.
基金supported by Nature Science Foundation of China(11461070),supported by Nature Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
基金Supported by the Scientific Research Starting Foundation for Master and Ph.D.of Honghe University(XSS08012)Supported by Scientific Research Fund of Yunnan Provincial Education Department of China Grant(09C0206)
文摘In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.
基金Supported by the NSF of China(10771220)Supported by the Doctorial Point Fund of National Education Ministry of China(200810780002)
文摘In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplicity at least k.Suppose that for each f∈F,f(z)and f(k)(z)share the set{a,b,c}.Then F is a normal family in D.
文摘We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.
文摘This paper studied the connection between normal family and unicity, and proved some results on unicity of entire functions. Mostly, it was proved: Let f be a nonconstant entire function, and let a, c be two nonzero complex numbers. If E(a,f)=E(a,f' ), and f"(z)=c whenever f' (z)=a, then f(z)=Ae^(cz)/u +(ac-a^2)/c.The proof uses the theory of normal families in an essential way.
文摘We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a positive integer. If for every f∈ F, i) the zeros of f(z) have a multiplicity of at least k+ 1, and ii) E^-f(k)(S) lohtain in E^-f(S), then F is normal on .4. At the same time, the corresponding results of normal function are also proved.
文摘A normal theorem concerning meromorphic functions sharing values was proved with the method of Zalcman- Pang.The theorem is as follows. If for each f in F, all zeros of f-a have multiplicity at least k (k≥2), f and its k-th derivative function share a, and if f=b whenever its k-th derivative equal b, then F is normal in D. This theorem improved the result of Chen and Fang [Chen HH, Fang ML, Shared values and normal families of meromorphic functions, Journal of Mathematical Analysis and Applications, 2001, 260: 124-132].
基金Supported by the National Natural Science Foundation of China(l1461070, 11271090) Supported by the Natural Science Foundation of Guangdong Province(S2012010010121)
文摘In this paper,we study the normality criterion for families of meromorphic functions concerning shared set depending on f∈F.Let F be a family of meromorphic functions in the unit disc A.For each f∈F,all zeros of f have multiplicity at least 2 and there exist nonzero complex numbers b_f,c_f satisfying(i) b_f/c_f is a constant;(ii) min{σ(0,b_f),σ(0,c_f),σ(b_f,c_f)} ≥m for some m > 0;(iii) E_f'(S_f)■ E_f(S_f),where S_f = {b_f,c_f}.Then F is normal in A.At the same time,the corresponding results are also proved.The results in this paper improve and generalize the related results
文摘In theorem LP [1], Liu proves the theorem when <em>N</em> = 2, but it can’t be ex-tended to the general case in his proof. So we consider the condition that the families of holomorphic curves share eleven hyperplanes, and we get the theorem 1.1.
文摘In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.
文摘Let F be a family of meromorphic functions on the unit disc A. Let a be a non-zero finite value and k be a positive integer. If for every f ∈ F,(i) f and f(k) share α ;(ii) the zeros of f(z) are of multiplicity ≥k + 1 , then F is normal on △.We also proved corresponding results on normal functions and a uniqueness theorem of entire functions .
基金supported in part by the National Natural Science Foundation of China(10371091)
文摘This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
文摘This paper continues the researches of Yang Lo and others, and gives a further generalization of Gu’s criterion for the normality of a family of meromorphic functions.
文摘In this paper, general modular theorems are obtained for meromorphic functions and their derivatives. The related criteria for normality of families of meromorphic functions are proved.
基金the NNSF of China(Grant No.10471065)the NSF of Education Department of Jiangsu Province(Grant No.04KJD110001)+1 种基金the SRF for ROCS,SEMthe Presidential Foundation of South China Agricultural University
文摘Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^λz + a(λ - 1)/)λ, where C and ), are nonzero constants with λ^k-1 = 1. The proof is based on the Wiman-Vlairon theory and the theory of normal families in an essential way.
基金The NNSF (19871050) the RFDP (98042209) of China.
文摘Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.
基金Acknowledgements This work was supported by the Visiting Scholar Program of Chern Institute of Mathematics at Nankai University when the first and third authors worked as visiting scholars. The authors wish to thank the anonymous referees for their very helpful comments and useful suggestions. This work was also supported by the National Natural Science Foundation of China (Grant No. 11271090), the Tianyuan Youth Fund of the National Natural Science Foundation of China (Grant No. 11326083), the Shanghai University Young Teacher Training Program (ZZSDJ12020), the Innovation Program of Shanghai Municipal Education Commission (14YZ164), the Natural Science Foundation of Guangdong Province (S2012010010121), and the Projects (13XKJC01) from the Leading Academic Discipline Project of Shanghai Dianji University.
文摘We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose differential polynomials share a non-zero value. Our theorems improve some previous results.