The paper describes the development results on one-dimensional (1D) asymptotic model of the formation kinetics for the objects (clusters) of subnuclear (quark) and subatomic (nuclear) matters. A concept of the objects...The paper describes the development results on one-dimensional (1D) asymptotic model of the formation kinetics for the objects (clusters) of subnuclear (quark) and subatomic (nuclear) matters. A concept of the objects distribution density wave φ(a, t) in space of sizes a lies in the basis for analytical description of the processes under consideration. The proposed formalism makes it possible to describe in an adequate way the final outcomes of the well-known catastrophic phenomena in the world of elementary particles. Mass characteristics of different processes of approach to equilibrium in nuclear reactions are calculated.展开更多
The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus....The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.展开更多
The saw-tooth phenomenon on the binding energy curve of N = Z nuclei is due to the low binding energy between the α-particles. It was suspected by Gamow to be of van der Waals type, found here to be deuteron bonds. T...The saw-tooth phenomenon on the binding energy curve of N = Z nuclei is due to the low binding energy between the α-particles. It was suspected by Gamow to be of van der Waals type, found here to be deuteron bonds. The binding energy per nucleon, in absolute value, of an α-particle is larger than any other combination of 4 nucleons. Therefore, the binding energy per nucleon is low for odd-odd N = Z nuclei and maximum for even-even N = Z nuclei. The assumption of N = Z nuclei to be an assembly of α-particles and deuteron bonds predicts the binding energy of the 32 first N = Z nuclei with a rms deviation of 0.25 MeV.展开更多
A thorough study of regular and quasi-regular polyhedra shows that the symmetries of these polyhedra identically describe the quantization of orbital angular momentum, of spin, and of total angular momentum, a fact wh...A thorough study of regular and quasi-regular polyhedra shows that the symmetries of these polyhedra identically describe the quantization of orbital angular momentum, of spin, and of total angular momentum, a fact which permits one to assign quantum states at the vertices of these polyhedra assumed as the average particle positions. Furthermore, if the particles are fermions, their wave function is anti-symmetric and its maxima are identically the same as those of repulsive particles, e.g., on a sphere like the spherical shape of closed shells, which implies equilibrium of these particles having average positions at the aforementioned maxima. Such equilibria on a sphere are solely satisfied at the vertices of regular and quasi-regular polyhedra which can be associated with the most probable forms of shells both in Nuclear Physics and in Atomic Cluster Physics when the constituent atoms possess half integer spins. If the average sizes of the constituent particles are known, then the average sizes of the resulting shells become known as well. This association of Symmetry with Quantum Mechanics leads to many applications and excellent results.展开更多
The study of cluster structures in light nuclei is extending to the heavy nuclei in these years. As for the stable N = Z nuclei, from the lighter 8Be, 12C nuclei to the heavier 20Ne and even the 40Ca and 44Ti medium n...The study of cluster structures in light nuclei is extending to the heavy nuclei in these years. As for the stable N = Z nuclei, from the lighter 8Be, 12C nuclei to the heavier 20Ne and even the 40Ca and 44Ti medium nuclei, the a cluster structures have been well studied and confirmed. In heavy nuclei, due to the dominated mean field, the existence of α cluster structure is not clear as light nuclei but some clues were found for indicating the core+ α cluster structure in some nuclei, in particular, the 208 pb+α structure in 212Po. We review some recent progress about the theoretical and experimental explorations of the a-clustering effects in heavy nuclei. We also discuss the possible a cluster structure of heavy nuclei from the view of a decay.展开更多
We present an analysis of π-^20Ne elastic scattering at intermediate energy basing on the α+^16O model of the ^20Ne nucleus and in the framework of Glauber multiple scattering theory. Satisfactory agreement with th...We present an analysis of π-^20Ne elastic scattering at intermediate energy basing on the α+^16O model of the ^20Ne nucleus and in the framework of Glauber multiple scattering theory. Satisfactory agreement with the general features of the experimental data of pion elastic scattering on the neighboring 4N-type nuclei is obtained without any free parameters. Compared with the experimental angular distributions of pion elastic scattering on ^12 C, ^16O, ^24Mg, and ^28Si nuclei, the diffractive patterns and the positions of the dips and peaks in the angular distributions of ^π-^20Ne elastic scattering are reasonably predicted by the calculations.展开更多
One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening eff...One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α-αdouble folding cluster(DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb(MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin(WKB) approach and coupled channel(CC)formalism have been used. Moreover, in order to investigate how the potentials between12C nuclei produce molecular cluster states of24Mg, the normalized resonant energy states of24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the24Mg nucleus.展开更多
文摘The paper describes the development results on one-dimensional (1D) asymptotic model of the formation kinetics for the objects (clusters) of subnuclear (quark) and subatomic (nuclear) matters. A concept of the objects distribution density wave φ(a, t) in space of sizes a lies in the basis for analytical description of the processes under consideration. The proposed formalism makes it possible to describe in an adequate way the final outcomes of the well-known catastrophic phenomena in the world of elementary particles. Mass characteristics of different processes of approach to equilibrium in nuclear reactions are calculated.
文摘利用高斯烟团模型,对爆炸当量为2 000 kgTNT的核事故开展计算研究,从污染区域内选择3个取样点,三维的坐标分别为(11.319 4,40.176 7,H1),(116.319 4,40.155 9,H2),(116.328 6,40.153 3,H3)。模拟扩散10 min后总外照射剂量率H1处剂量率较小,只有2个高度点出现剂量率,分别为235 m 1.7919E-001mSv/h和315 m 1.6596E-001mSv/h;H2高剂量段取3点记录,分别为275 m 1.6959E+000mSv/h、345 m1.6284E+000mSv/h和415 m 1.2449E+000mSv/h;H3高剂量段任取3点记录,分别为345 m 5.7242E-001mSv/h、415 m 7.2301E-001mSv/h和475 m 3.7625E-00mSv/h。高剂量区间主要分布在300 m到400 m之间。
基金Supported by National Natural Science Foundation of China under Grant No.10865002
文摘The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.
文摘The saw-tooth phenomenon on the binding energy curve of N = Z nuclei is due to the low binding energy between the α-particles. It was suspected by Gamow to be of van der Waals type, found here to be deuteron bonds. The binding energy per nucleon, in absolute value, of an α-particle is larger than any other combination of 4 nucleons. Therefore, the binding energy per nucleon is low for odd-odd N = Z nuclei and maximum for even-even N = Z nuclei. The assumption of N = Z nuclei to be an assembly of α-particles and deuteron bonds predicts the binding energy of the 32 first N = Z nuclei with a rms deviation of 0.25 MeV.
文摘A thorough study of regular and quasi-regular polyhedra shows that the symmetries of these polyhedra identically describe the quantization of orbital angular momentum, of spin, and of total angular momentum, a fact which permits one to assign quantum states at the vertices of these polyhedra assumed as the average particle positions. Furthermore, if the particles are fermions, their wave function is anti-symmetric and its maxima are identically the same as those of repulsive particles, e.g., on a sphere like the spherical shape of closed shells, which implies equilibrium of these particles having average positions at the aforementioned maxima. Such equilibria on a sphere are solely satisfied at the vertices of regular and quasi-regular polyhedra which can be associated with the most probable forms of shells both in Nuclear Physics and in Atomic Cluster Physics when the constituent atoms possess half integer spins. If the average sizes of the constituent particles are known, then the average sizes of the resulting shells become known as well. This association of Symmetry with Quantum Mechanics leads to many applications and excellent results.
文摘The study of cluster structures in light nuclei is extending to the heavy nuclei in these years. As for the stable N = Z nuclei, from the lighter 8Be, 12C nuclei to the heavier 20Ne and even the 40Ca and 44Ti medium nuclei, the a cluster structures have been well studied and confirmed. In heavy nuclei, due to the dominated mean field, the existence of α cluster structure is not clear as light nuclei but some clues were found for indicating the core+ α cluster structure in some nuclei, in particular, the 208 pb+α structure in 212Po. We review some recent progress about the theoretical and experimental explorations of the a-clustering effects in heavy nuclei. We also discuss the possible a cluster structure of heavy nuclei from the view of a decay.
基金Supported by National Natural Science Foundation of China under Grant No.11265004
文摘We present an analysis of π-^20Ne elastic scattering at intermediate energy basing on the α+^16O model of the ^20Ne nucleus and in the framework of Glauber multiple scattering theory. Satisfactory agreement with the general features of the experimental data of pion elastic scattering on the neighboring 4N-type nuclei is obtained without any free parameters. Compared with the experimental angular distributions of pion elastic scattering on ^12 C, ^16O, ^24Mg, and ^28Si nuclei, the diffractive patterns and the positions of the dips and peaks in the angular distributions of ^π-^20Ne elastic scattering are reasonably predicted by the calculations.
基金Supported by the Turkish Science and Research Council (TüBIiTAK) with (117R015)
文摘One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α-αdouble folding cluster(DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb(MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin(WKB) approach and coupled channel(CC)formalism have been used. Moreover, in order to investigate how the potentials between12C nuclei produce molecular cluster states of24Mg, the normalized resonant energy states of24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the24Mg nucleus.