To determine the feasibility of a nonradioactive electrophoresis mobility shift assay for detecting nuclear transcription factor, double-stranded oligonucleotides encoding the consensus target sequence of NF-κB were ...To determine the feasibility of a nonradioactive electrophoresis mobility shift assay for detecting nuclear transcription factor, double-stranded oligonucleotides encoding the consensus target sequence of NF-κB were labled with DIG by terminal transferase After nuclear protein stimulated with phorbol 12-myristate 13-acetate (PMA) or PMA and pyrrolidine dithiocarbamate (PDTC) electrophoresed on 8 % nondenaturing poliacrylamide gel together with oligeonucleotide probe, they were electro-blotted nylon membrane positively charged Anti-DIG-AP antibody catalyzed chemiluminescent substrate CSPD to image on X-film The results showed that nuclear proteins binded specifically to the NF-κB consensus sequence in the EMSA by chemiluminescent technique method and the activity of NF-κB in PMA group was more than that in PMA+PDTC group It is suggested that detection of NF-κB by EMSA with chemiluminescent technique is feasible and simple, which can be performed in ordinary laboratories展开更多
Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, a...Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.展开更多
Summary: To investigate the role of NF-κB in endotoxic shock in rats, the model of endotoxin-shock rats was induced by intravenous infusion of lipopolysaccharide (LPS). 1 h, 2 h, 4 h and 6 h after LPS injection, the...Summary: To investigate the role of NF-κB in endotoxic shock in rats, the model of endotoxin-shock rats was induced by intravenous infusion of lipopolysaccharide (LPS). 1 h, 2 h, 4 h and 6 h after LPS injection, the activation of NF-κB in blood mononuclear cells and the content of TNF-α and IL-6 in plasma was detected by enzyme-linked immunoadsordent assay (ELISA). The level of mean arterial pressure (MAP) and the histopathological changes of lung and liver were also observed. The activation of NF-κB in mononuclear cells increased 1 h after LPS injection and reached its peak 2 h after the injection, and its level was higher than that of normal group. The level of TNF-α was increased 1 h after the infusion and peaked 2 h after the injection, and its level was higher than that of normal group after LPS infusion. The content of IL-6 increased gradually with time, the IL-6 level was higher than that of normal group after LPS injection. MAP was decreased gradually with time and its level was lower than that of normal group after LPS injection. Pathological examination showed that endotoxic shock could cause pulmonary alveolar hemorrhage, edema and infiltration of inflammatory cell in lung tissue and congestion, edema, capillary dilation and inflammatory cell infiltration in liver tissue. It is concluded that NF-κB can up-regulate the expression of TNF-α and IL-6 in plasma and play an important role in endotoxin-induced shock in rats.展开更多
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate i...BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate its dynamic expression and its clinical value in the development and diagnosis of HCC. METHODS: Hepatoma models were induced by oral administration of 2-acetamidoflurene (2-FAA) to male Sprague-Dawley rats. Morphological changes were observed after hematoxylin and eosin staining. The cellular distribution of NF-kappa B expression during different stages of cancer development was investigated by immunohistochemistry, and the level of NF-kappa B expression in liver tissues was quantitatively analyzed by ELISA. The gene fragments of hepatic NF-kappa B were amplified by nested-polymerase chain reaction assay. RESULTS: Hepatocytes showed vacuole-like degeneration during the early stages, then had a hyperplastic nodal appearance during the middle stages, and finally progressed to tubercles of cancerous nests with high differentiation. The NF-kappa B-positive material was buff-colored, fine particles localized in the nucleus, and the incidence of NF-kappa B-positive cells was 81.8% in degeneration, 83.3% in precancerous lesions, and 100% in cancerous tissues. All of these values were higher than those in controls (P<0.01). Hepatic NF-kappa B expression and hepatic NF-kappa B-mRNA were also higher during the course of HCC development (P<0.01). CONCLUSION: The NF-kappa B signal transduction pathway is activated during the early stages of HCC development, and its abnormal expression may be associated with the occurrence of HCC.展开更多
In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and th...In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and their important role in oil accumulation regulation was mainly elucidated. Overexpession of transcription factors as feasible ways of genetic manipulation to increase oJl content in oilseed crops are promising in a long-term perspective.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underl...Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underlying this transcription reprogramming is currently unknown. Here we demonstrate that by the time when transcription is shut down in germinal vesicle oocytes, a range of general transcription factors and transcriptional regulators are dissociated from the chromatin. The global dissociation of chromatin factors (CFs) disrupts physical contacts between the chromatin and CFs and leads to erasure of the maternal transcription program at the functional level. Critical transcription factors and regulators remain separated from chromatin for a prolonged period, and become re-associated with chromatin shortly after pronuclear formation. This is followed temporally by the re-establishment of nuclear functions such as DNA replication and transcription. We propose that the maternal transcription program is erased during oogenesis to generate a relatively naive chromatin and the zygotic transcription program is rebuilt de novo after fertilization. This process is termed as the "erase-and-rebuild" process, which is used to reset the transcription program, and most likely other nuclear processes as well, from a maternal one to that of the embryo. We further show in the accompanying paper (Gao T, et al., Cell Res 2007; 17:135-150.) that the same strategy is also employed to reprogram transcriptional profiles in somatic cell nuclear transfer and parthenogenesis, suggesting that this model is universally applicable to all forms of transcriptional reprogramming during early embryogenesis. Displacement of CFs from chromatin also offers an explanation for the phenomenon of transcription silence during the maternal to zygotic transition.展开更多
The B3 transcription factors(TFs)in plants play vital roles in numerous biological processes.Although B3 genes have been broadly identified in many plants,little is known about their potential functions in mediating s...The B3 transcription factors(TFs)in plants play vital roles in numerous biological processes.Although B3 genes have been broadly identified in many plants,little is known about their potential functions in mediating seed development and material accumulation.Castor bean(Ricinus communis)is a non-edible oilseed crop considered an ideal model system for seed biology research.Here,we identified a total of 61 B3 genes in the castor bean genome,which can be classified into five subfamilies,including ABI3/VP1,HSI,ARF,RAV and REM.The expression profiles revealed that RcABI3/VP1 subfamily genes are significantly up-regulated in the middle and later stages of seed development,indicating that these genes may be associated with the accumulation of storage oils.Furthermore,through yeast one-hybrid and tobacco transient expression assays,we detected that ABI3/VP1 subfamily member RcLEC2 directly regulates the transcription of RcOleosin2,which encodes an oil-body structural protein.This finding suggests that RcLEC2,as a seed-specific TF,may be involved in the regulation of storage materials accumulation.This study provides novel insights into the potential roles and molecular basis of B3 family proteins in seed development and material accumulation.展开更多
Specificity protein(Sp)transcription factors(TFs)Sp1,Sp3 and Sp4,and the orphan nuclear receptor 4A1(NR4A1)are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patien...Specificity protein(Sp)transcription factors(TFs)Sp1,Sp3 and Sp4,and the orphan nuclear receptor 4A1(NR4A1)are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patient survival.Results of knockdown and overexpression of Sp1,Sp3 and Sp4 in pancreatic and other cancer lines show that these TFs are individually pro-oncogenic factors and loss of one Sp TF is not compensated by other members.NR4A1 is also a prooncogenic factor and both NR4A1 and Sp TFs exhibit similar functions in pancreatic cancer cells and regulate cell growth,survival,migration and invasion.There is also evidence that Sp TFs and NR4A1 regulate some of the same genes including survivin,epidermal growth factor receptor,PAX3-FOXO1,α5-andα6-integrins,β1-,β3-andβ4-integrins;this is due to NR4A1 acting as a cofactor and mediating NR4A1/Sp1/4-regulated gene expression through GC-rich gene promoter sites.Several studies show that drugs targeting Sp downregulation or NR4A1 antagonists are highly effective inhibitors of Sp/NR4A1-regulated pathways and genes in pancreatic and other cancer cells,and the triterpenoid celastrol is a novel dual-acting agent that targets both Sp TFs and NR4A1.展开更多
The WRKY proteins are a family of plant-specific transcription factors(TFs)that are widely involved in plant development and anti-stress responses.Arabidopsis WRKY11(AtWRKY11)functions in regulating plant defense agai...The WRKY proteins are a family of plant-specific transcription factors(TFs)that are widely involved in plant development and anti-stress responses.Arabidopsis WRKY11(AtWRKY11)functions in regulating plant defense against abiotic stress and belongs to the Ild subgroup of WRKY TFs.We herein report the expres sion,purification and preliminary structural characterization of AtWRKY11 DNA-binding domain(DBD)using solution NMR Almost complete backbone chemical shift assignments of AtWRKY11-DBD have been ob-tained.Chemical shift-based secondary structure analysis suggests that AtWRKY11-DBD may exhibit local conformational diferences from the X-ray structure of the C-terminal WRKY domain of AtWRKY1,particularly in the β1 and β5 strands.Our current study provides the basis for further structural and interactional studies.展开更多
FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plan...FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plant life cycle,especially in seed germination,dormancy,embryo formation,seed and fruit development,and maturation.However,there is limited information about its functions in seed and fruit development of grapevine.In this study,we expressed VvFUS3 in tomato for its functional characterization.Overexpression of VvFUS3 in tomato led to a reduction in seed number and seed weight without affecting the fruit size.Histological analysis found that both cell expansion and cell division in transgenic seed and fruit pericarp have been affected.However,there were no obvious differences in pollen size,shape,and viability,suggesting that VvFUS3 affects seed development but not the pollen grains.Moreover,the expression of several genes with presumed roles in seed development and hormone signaling pathways was also influenced by VvFUS3.These results suggest that VvFUS3 is involved in hormonal signaling pathways that regulate seed number and size.In conclusion,our study provides novel preliminary information about the pivotal roles of VvFUS3 in seed and fruit development and these findings can potentially serve as a reference for molecular breeding of seedless grapes.展开更多
Objective:To determine the effect of Salvianolic acid B (Sal B) on glucose and lipid metabolism in mice with high-fat diet (HFD)-induced obesity,and to investigate the underlying mechanisms by measuring the expression...Objective:To determine the effect of Salvianolic acid B (Sal B) on glucose and lipid metabolism in mice with high-fat diet (HFD)-induced obesity,and to investigate the underlying mechanisms by measuring the expression levels of key adipogenic transcription factors.Methods:Six-week-old C57BL/6J male mice were fed for 12 weeks with a HFD to induce obesity or a standard diet to serve as normal controls.A mean body weight increase of more than 20% after these 12 weeks was used as the criteria for obesity.HFD-fed obese mice then received a supplement of Sal B (100 mg/kg body weight/day),metformin (75 mg/kg body weight/day) or water (an equivalent volume;served as model controls) by oral gavage for an additional 8 weeks,and the normal controls received water (an equivalent volume) by oral gavage for the same period.Results:Sal B significantly reduced body weight gain (P <.05) without influencing food intake in HFD-fed obese mice relative to model controls.Sal B also reduced the body fat mass of the obese mice relative to model controls in a time-dependent manner (P <.05).Sal B significantly decreased the serum concentrations of low-density lipoprotein cholesterol,total cholesterol,triglyceride and free fatty acids by 25.5%,20.2%,20.6% and 13.4%,respectively,and increased the concentration of high-density lipoprotein cholesterol by 50.1% relative to model controls.In addition,Sal B significantly lowered fasting glucose concentrations and improved insulin sensitivity relative to model controls (P <.05).Sal B acted by ameliorating the histopathological changes in both brown and white adipose tissues of obese mice.Moreover,in brown adipose tissue,Sal B up-regulated the mRNA and protein expression of PPARγ and c/EBPα,and the protein expression of PPARα and SREBP-1 (P <.05).In white adipose tissue,Sal B down-regulated the mRNA expression of PPARγ and c/EBPα,and decreased the protein expression of PPARγ and SREBP-1(P <.05).Conclusjons:The results suggest that Sal B can reduce body weight gain and regulate glucose and lipid metabolism in mice with diet-induced obesity by regulating adipogenic transcription factors in their adipose tissues.展开更多
背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄...背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。展开更多
BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignanc...BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignancies. We investigated the dynamic expression of NF-kappa B and its influences on the occurrence of HCC through antiangiogenic (thalidomide) intervention in NF-kappa B activation. METHODS : Hepatoma models were induced with 2-fluorenylacetamide (2-FAA, 0.05%) in male Sprague-Dawley rats, and thalidomide (100 mg/kg body weight) was administered intragastrically to intervene in NF-kappa B activation. The pathological changes in the liver of sacrificed rats were assessed after hematoxylin and eosin staining. NF-kappa B mRNA was amplified by RT-nested PCR. The alterations of NF-kappa B and vascular endothelial growth factor (VEGF) expression were analyzed by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting. RESULTS: Rat hepatocytes showed denatured, precancerous, and cancerous stages in hepatocarcinogenesis, with an increasing tendency of hepatic NF-kappa B, NF-kappa B mRNA, and VEGF expression, and their values in the HCC group were higher than those in controls (P<0.001). In the thalidomide-treated group, the morphologic changes generated only punctiform denaturation and necrosis at the early or middle stages, and nodular hyperplasia or a little atypical hyperplasia at the final stages, with the expression of NF-kappa B (chi(2)=9.93, P<0.001) and VEGF (chi(2)=8.024, P<0.001) lower than that in the 2-FAA group. CONCLUSION: NF-kappa B is overexpressed in hepatocarcinogenesis and antiangiogenic treatment down-regulates the expression of NF-kappa B and VEGF, and delays the occurrence of HCC. (Hepatobiliary Pancreat Dis Int 2010; 9: 169-174)展开更多
Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with...Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.展开更多
Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for...Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.展开更多
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, p...Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.展开更多
AIM: To detect the nuclear factor kappa B (NF-κB) condition in human stage IV gastric carcinoma patients and to explore the correlation between NF-κB activation and survival of these patients after chemotherapy. ...AIM: To detect the nuclear factor kappa B (NF-κB) condition in human stage IV gastric carcinoma patients and to explore the correlation between NF-κB activation and survival of these patients after chemotherapy. METHODS: Expression of NF-κB-p65 was determined by immunohistochemical analysis. Activity of NF-κB DNA-binding in carcinoma tissue was detected by electrophoretic mobility shift assay. Kaplan-Meier survival analysis was performed to show the relation between NF-κB and progression-free survival (PFS) or overall survival (OS) of the patients. RESULTS: The positive expression rate of NF-κB-p65 in 60 gastric cancer tissue samples was 76.7% (46160). The expression of NF-κB-p65 was reduced in adjacent carcinoma and normal tissue samples. Electrophoretic mobility shift assay (EMSA) analysis showed a strong activation of NF-κB in cancer tissue samples. A survival difference was found in NF-κB-p65 positive and negative patients. NF-κB-p65 expression was negative in cancer tissue samples (n = 14). PFS was 191.40 ± 59.88 d and 152.93 ±16.99 d, respectively, in patients with positive NF-κB-p65 expression (n = 46) (P = 0.4028). The survival time of patients with negative and positive NF-κB-p65 expression was 425.16 ±61.61 d and 418.85 ±42.98 d, respectively (P = 0.7303). Kaplan-Meier analysis showed no significant difference in PFS or OS. The 46 patient tissue which positive NF-κB-p65 expression was found in the tissue samples from the 46 patients whose PFS and OS were 564.89 ± 75.94 d and s 352.37 ±41.32 d, respectively (P = 0.0165). CONCLUSION: NF-κB is activated in gastric carcinoma tissue, which is related to the OS after chemotherapy.展开更多
基金ThisprojectwassupportedbyagrantfromNationalNaturalSciencesFoundationofChina (No 30 0 70 332 )
文摘To determine the feasibility of a nonradioactive electrophoresis mobility shift assay for detecting nuclear transcription factor, double-stranded oligonucleotides encoding the consensus target sequence of NF-κB were labled with DIG by terminal transferase After nuclear protein stimulated with phorbol 12-myristate 13-acetate (PMA) or PMA and pyrrolidine dithiocarbamate (PDTC) electrophoresed on 8 % nondenaturing poliacrylamide gel together with oligeonucleotide probe, they were electro-blotted nylon membrane positively charged Anti-DIG-AP antibody catalyzed chemiluminescent substrate CSPD to image on X-film The results showed that nuclear proteins binded specifically to the NF-κB consensus sequence in the EMSA by chemiluminescent technique method and the activity of NF-κB in PMA group was more than that in PMA+PDTC group It is suggested that detection of NF-κB by EMSA with chemiluminescent technique is feasible and simple, which can be performed in ordinary laboratories
文摘Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.
基金This project was supported by a grant from Hubei Province Science and Technology Foundation (2003AA301C51).
文摘Summary: To investigate the role of NF-κB in endotoxic shock in rats, the model of endotoxin-shock rats was induced by intravenous infusion of lipopolysaccharide (LPS). 1 h, 2 h, 4 h and 6 h after LPS injection, the activation of NF-κB in blood mononuclear cells and the content of TNF-α and IL-6 in plasma was detected by enzyme-linked immunoadsordent assay (ELISA). The level of mean arterial pressure (MAP) and the histopathological changes of lung and liver were also observed. The activation of NF-κB in mononuclear cells increased 1 h after LPS injection and reached its peak 2 h after the injection, and its level was higher than that of normal group. The level of TNF-α was increased 1 h after the infusion and peaked 2 h after the injection, and its level was higher than that of normal group after LPS infusion. The content of IL-6 increased gradually with time, the IL-6 level was higher than that of normal group after LPS injection. MAP was decreased gradually with time and its level was lower than that of normal group after LPS injection. Pathological examination showed that endotoxic shock could cause pulmonary alveolar hemorrhage, edema and infiltration of inflammatory cell in lung tissue and congestion, edema, capillary dilation and inflammatory cell infiltration in liver tissue. It is concluded that NF-κB can up-regulate the expression of TNF-α and IL-6 in plasma and play an important role in endotoxin-induced shock in rats.
基金supported by grants from the Project of Elitist Peak in Six Fields(No.2006-B-063)the Projectof Medical Sciences(H200727),the Bureau of Health,Jiangsu Province,China
文摘BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate its dynamic expression and its clinical value in the development and diagnosis of HCC. METHODS: Hepatoma models were induced by oral administration of 2-acetamidoflurene (2-FAA) to male Sprague-Dawley rats. Morphological changes were observed after hematoxylin and eosin staining. The cellular distribution of NF-kappa B expression during different stages of cancer development was investigated by immunohistochemistry, and the level of NF-kappa B expression in liver tissues was quantitatively analyzed by ELISA. The gene fragments of hepatic NF-kappa B were amplified by nested-polymerase chain reaction assay. RESULTS: Hepatocytes showed vacuole-like degeneration during the early stages, then had a hyperplastic nodal appearance during the middle stages, and finally progressed to tubercles of cancerous nests with high differentiation. The NF-kappa B-positive material was buff-colored, fine particles localized in the nucleus, and the incidence of NF-kappa B-positive cells was 81.8% in degeneration, 83.3% in precancerous lesions, and 100% in cancerous tissues. All of these values were higher than those in controls (P<0.01). Hepatic NF-kappa B expression and hepatic NF-kappa B-mRNA were also higher during the course of HCC development (P<0.01). CONCLUSION: The NF-kappa B signal transduction pathway is activated during the early stages of HCC development, and its abnormal expression may be associated with the occurrence of HCC.
基金Supported by Science and Technology Foundation of Guizhou Province [(2011)2089]Engineering Technology Research Center Building Fund of Guizhou Province ([2012]4006)Excellent Scientific and Educational Governor Fund of Guizhou Province ([2009]06)~~
文摘In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and their important role in oil accumulation regulation was mainly elucidated. Overexpession of transcription factors as feasible ways of genetic manipulation to increase oJl content in oilseed crops are promising in a long-term perspective.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
文摘Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underlying this transcription reprogramming is currently unknown. Here we demonstrate that by the time when transcription is shut down in germinal vesicle oocytes, a range of general transcription factors and transcriptional regulators are dissociated from the chromatin. The global dissociation of chromatin factors (CFs) disrupts physical contacts between the chromatin and CFs and leads to erasure of the maternal transcription program at the functional level. Critical transcription factors and regulators remain separated from chromatin for a prolonged period, and become re-associated with chromatin shortly after pronuclear formation. This is followed temporally by the re-establishment of nuclear functions such as DNA replication and transcription. We propose that the maternal transcription program is erased during oogenesis to generate a relatively naive chromatin and the zygotic transcription program is rebuilt de novo after fertilization. This process is termed as the "erase-and-rebuild" process, which is used to reset the transcription program, and most likely other nuclear processes as well, from a maternal one to that of the embryo. We further show in the accompanying paper (Gao T, et al., Cell Res 2007; 17:135-150.) that the same strategy is also employed to reprogram transcriptional profiles in somatic cell nuclear transfer and parthenogenesis, suggesting that this model is universally applicable to all forms of transcriptional reprogramming during early embryogenesis. Displacement of CFs from chromatin also offers an explanation for the phenomenon of transcription silence during the maternal to zygotic transition.
基金National Natural Science Foundation of China(31661143002,81760507,31571709,31771839,31701123 and 31501034)Yunnan Applied Basic Research Projects(2016FA011,2016FB060 and 2016FB040)+1 种基金the National R&D Infrastructure and Facility development Program of China"Fundamental Science Data Sharing Platform(DKA 201712-02-16)the 13th Five-year informatization Plan of Chinese Academy of Sciences(No.XXH13506)。
文摘The B3 transcription factors(TFs)in plants play vital roles in numerous biological processes.Although B3 genes have been broadly identified in many plants,little is known about their potential functions in mediating seed development and material accumulation.Castor bean(Ricinus communis)is a non-edible oilseed crop considered an ideal model system for seed biology research.Here,we identified a total of 61 B3 genes in the castor bean genome,which can be classified into five subfamilies,including ABI3/VP1,HSI,ARF,RAV and REM.The expression profiles revealed that RcABI3/VP1 subfamily genes are significantly up-regulated in the middle and later stages of seed development,indicating that these genes may be associated with the accumulation of storage oils.Furthermore,through yeast one-hybrid and tobacco transient expression assays,we detected that ABI3/VP1 subfamily member RcLEC2 directly regulates the transcription of RcOleosin2,which encodes an oil-body structural protein.This finding suggests that RcLEC2,as a seed-specific TF,may be involved in the regulation of storage materials accumulation.This study provides novel insights into the potential roles and molecular basis of B3 family proteins in seed development and material accumulation.
基金Supported by Houston Methodist Cancer Center Innovation Award。
文摘Specificity protein(Sp)transcription factors(TFs)Sp1,Sp3 and Sp4,and the orphan nuclear receptor 4A1(NR4A1)are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patient survival.Results of knockdown and overexpression of Sp1,Sp3 and Sp4 in pancreatic and other cancer lines show that these TFs are individually pro-oncogenic factors and loss of one Sp TF is not compensated by other members.NR4A1 is also a prooncogenic factor and both NR4A1 and Sp TFs exhibit similar functions in pancreatic cancer cells and regulate cell growth,survival,migration and invasion.There is also evidence that Sp TFs and NR4A1 regulate some of the same genes including survivin,epidermal growth factor receptor,PAX3-FOXO1,α5-andα6-integrins,β1-,β3-andβ4-integrins;this is due to NR4A1 acting as a cofactor and mediating NR4A1/Sp1/4-regulated gene expression through GC-rich gene promoter sites.Several studies show that drugs targeting Sp downregulation or NR4A1 antagonists are highly effective inhibitors of Sp/NR4A1-regulated pathways and genes in pancreatic and other cancer cells,and the triterpenoid celastrol is a novel dual-acting agent that targets both Sp TFs and NR4A1.
基金This work was supported by grants 2018YFE0202300,2018YFA0704002 from the National Key R&D Program of Chinagrant 21735007 from the National Natural Science Foundation of China to M.L.grant 21991083 from the National Natural Science Foundation of China to Y.H.
文摘The WRKY proteins are a family of plant-specific transcription factors(TFs)that are widely involved in plant development and anti-stress responses.Arabidopsis WRKY11(AtWRKY11)functions in regulating plant defense against abiotic stress and belongs to the Ild subgroup of WRKY TFs.We herein report the expres sion,purification and preliminary structural characterization of AtWRKY11 DNA-binding domain(DBD)using solution NMR Almost complete backbone chemical shift assignments of AtWRKY11-DBD have been ob-tained.Chemical shift-based secondary structure analysis suggests that AtWRKY11-DBD may exhibit local conformational diferences from the X-ray structure of the C-terminal WRKY domain of AtWRKY1,particularly in the β1 and β5 strands.Our current study provides the basis for further structural and interactional studies.
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1603234)the Program for Innovative Research Team of Grape Germplasm Resources and Breeding(Grant No.2013KCT-25).
文摘FUSCA3(FUS3)is a member of B3-domain transcription factor family and master regulator of seed development.It has potential roles in hormone biosynthesis and signaling pathways and therefore plays diverse roles in plant life cycle,especially in seed germination,dormancy,embryo formation,seed and fruit development,and maturation.However,there is limited information about its functions in seed and fruit development of grapevine.In this study,we expressed VvFUS3 in tomato for its functional characterization.Overexpression of VvFUS3 in tomato led to a reduction in seed number and seed weight without affecting the fruit size.Histological analysis found that both cell expansion and cell division in transgenic seed and fruit pericarp have been affected.However,there were no obvious differences in pollen size,shape,and viability,suggesting that VvFUS3 affects seed development but not the pollen grains.Moreover,the expression of several genes with presumed roles in seed development and hormone signaling pathways was also influenced by VvFUS3.These results suggest that VvFUS3 is involved in hormonal signaling pathways that regulate seed number and size.In conclusion,our study provides novel preliminary information about the pivotal roles of VvFUS3 in seed and fruit development and these findings can potentially serve as a reference for molecular breeding of seedless grapes.
基金This study is supported by grants from the National Natural Science Foundation of China(81274041 and 81503540)the International Cooperation Projects of MOE(2011DFA30920)+1 种基金a Co-construction Project of Beijing Board of Education(0101216-14)a Research Project of the Beijing University of Chinese Medicine(2014-X-003).
文摘Objective:To determine the effect of Salvianolic acid B (Sal B) on glucose and lipid metabolism in mice with high-fat diet (HFD)-induced obesity,and to investigate the underlying mechanisms by measuring the expression levels of key adipogenic transcription factors.Methods:Six-week-old C57BL/6J male mice were fed for 12 weeks with a HFD to induce obesity or a standard diet to serve as normal controls.A mean body weight increase of more than 20% after these 12 weeks was used as the criteria for obesity.HFD-fed obese mice then received a supplement of Sal B (100 mg/kg body weight/day),metformin (75 mg/kg body weight/day) or water (an equivalent volume;served as model controls) by oral gavage for an additional 8 weeks,and the normal controls received water (an equivalent volume) by oral gavage for the same period.Results:Sal B significantly reduced body weight gain (P <.05) without influencing food intake in HFD-fed obese mice relative to model controls.Sal B also reduced the body fat mass of the obese mice relative to model controls in a time-dependent manner (P <.05).Sal B significantly decreased the serum concentrations of low-density lipoprotein cholesterol,total cholesterol,triglyceride and free fatty acids by 25.5%,20.2%,20.6% and 13.4%,respectively,and increased the concentration of high-density lipoprotein cholesterol by 50.1% relative to model controls.In addition,Sal B significantly lowered fasting glucose concentrations and improved insulin sensitivity relative to model controls (P <.05).Sal B acted by ameliorating the histopathological changes in both brown and white adipose tissues of obese mice.Moreover,in brown adipose tissue,Sal B up-regulated the mRNA and protein expression of PPARγ and c/EBPα,and the protein expression of PPARα and SREBP-1 (P <.05).In white adipose tissue,Sal B down-regulated the mRNA expression of PPARγ and c/EBPα,and decreased the protein expression of PPARγ and SREBP-1(P <.05).Conclusjons:The results suggest that Sal B can reduce body weight gain and regulate glucose and lipid metabolism in mice with diet-induced obesity by regulating adipogenic transcription factors in their adipose tissues.
文摘背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。
基金supported by grants from the Project of Elitist Peak in Six Fields(No.2006-B-063)the Project of Medical Sciences(H200727),the Bureau of Health,Jiangsu Province,China
文摘BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignancies. We investigated the dynamic expression of NF-kappa B and its influences on the occurrence of HCC through antiangiogenic (thalidomide) intervention in NF-kappa B activation. METHODS : Hepatoma models were induced with 2-fluorenylacetamide (2-FAA, 0.05%) in male Sprague-Dawley rats, and thalidomide (100 mg/kg body weight) was administered intragastrically to intervene in NF-kappa B activation. The pathological changes in the liver of sacrificed rats were assessed after hematoxylin and eosin staining. NF-kappa B mRNA was amplified by RT-nested PCR. The alterations of NF-kappa B and vascular endothelial growth factor (VEGF) expression were analyzed by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting. RESULTS: Rat hepatocytes showed denatured, precancerous, and cancerous stages in hepatocarcinogenesis, with an increasing tendency of hepatic NF-kappa B, NF-kappa B mRNA, and VEGF expression, and their values in the HCC group were higher than those in controls (P<0.001). In the thalidomide-treated group, the morphologic changes generated only punctiform denaturation and necrosis at the early or middle stages, and nodular hyperplasia or a little atypical hyperplasia at the final stages, with the expression of NF-kappa B (chi(2)=9.93, P<0.001) and VEGF (chi(2)=8.024, P<0.001) lower than that in the 2-FAA group. CONCLUSION: NF-kappa B is overexpressed in hepatocarcinogenesis and antiangiogenic treatment down-regulates the expression of NF-kappa B and VEGF, and delays the occurrence of HCC. (Hepatobiliary Pancreat Dis Int 2010; 9: 169-174)
文摘Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.
文摘Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.
基金supported by the Leibniz Association,Germany,and the VELUX Foundation,Switzerland
文摘Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.
文摘AIM: To detect the nuclear factor kappa B (NF-κB) condition in human stage IV gastric carcinoma patients and to explore the correlation between NF-κB activation and survival of these patients after chemotherapy. METHODS: Expression of NF-κB-p65 was determined by immunohistochemical analysis. Activity of NF-κB DNA-binding in carcinoma tissue was detected by electrophoretic mobility shift assay. Kaplan-Meier survival analysis was performed to show the relation between NF-κB and progression-free survival (PFS) or overall survival (OS) of the patients. RESULTS: The positive expression rate of NF-κB-p65 in 60 gastric cancer tissue samples was 76.7% (46160). The expression of NF-κB-p65 was reduced in adjacent carcinoma and normal tissue samples. Electrophoretic mobility shift assay (EMSA) analysis showed a strong activation of NF-κB in cancer tissue samples. A survival difference was found in NF-κB-p65 positive and negative patients. NF-κB-p65 expression was negative in cancer tissue samples (n = 14). PFS was 191.40 ± 59.88 d and 152.93 ±16.99 d, respectively, in patients with positive NF-κB-p65 expression (n = 46) (P = 0.4028). The survival time of patients with negative and positive NF-κB-p65 expression was 425.16 ±61.61 d and 418.85 ±42.98 d, respectively (P = 0.7303). Kaplan-Meier analysis showed no significant difference in PFS or OS. The 46 patient tissue which positive NF-κB-p65 expression was found in the tissue samples from the 46 patients whose PFS and OS were 564.89 ± 75.94 d and s 352.37 ±41.32 d, respectively (P = 0.0165). CONCLUSION: NF-κB is activated in gastric carcinoma tissue, which is related to the OS after chemotherapy.