Biofouling is an important factor that affects bivalve farming industry. Fouling organisms may reduce growth and survival rate of the cultured species. Fouler are often filter feeders, so they are potential competitor...Biofouling is an important factor that affects bivalve farming industry. Fouling organisms may reduce growth and survival rate of the cultured species. Fouler are often filter feeders, so they are potential competitors for food resource with the cultured species. The present study was conducted to measure the impact of fouling on food uptake and nutrient release in April, 2006 in Daya Bay near Guangzhou, China. Results showed that fouling organisms had significant effect on food uptake and nutrient release. The chlorophyll a uptake rate of fouled scallops was 7.53 / Lh ±1.416 / Lh in April, significantly higher than those of cleaned scallops, Le., 4.23 / Lh±2.744 / Lh. The consumption of total particulate matter by fouled scallops in April was 5.52 / Lh± 0.818 / Lh; the corresponding results for cleaned scallops are 2.49 / Lh ±0.614 / Lh Fouling increased ammonia release significantly. The ammonia release rate of fouled scallops was 33.81/Lh ±7.699 / Lh in April, while cleaned scallops released 2.46 / Lh ±0.511 / Lh ammonia. Phosphate uptake of fouled scallops was 2.01± 0.699 / Lh and cleaned scallops released phosphate 6.01 / Lh + 0.876 / Lh in April. There was not significant difference in nitrate consumption between fouled and cleaned scallops. According to the phytoplankton classification of input and output water samples, fouled scallops filtered more phytoplankton species than cleaned scallops. Therefore, this study showed that fouling contributed much to phytoplankton depletion and concentration increase of ammonia in water.展开更多
[Objective] The study aimed to research the nutrients release of ponds sediment.[Method] The sediments which from a new pond(A) and an old one (B) these analyses used to carry out indoor experiment under the anaerobic...[Objective] The study aimed to research the nutrients release of ponds sediment.[Method] The sediments which from a new pond(A) and an old one (B) these analyses used to carry out indoor experiment under the anaerobic dark condition for researching on nutrient release. The N(nitrogenous) and P(phosphorous) release were analyzed every two days.[Result] At the prophase, the N release in B was bigger than that in A, while the decline sediment release in A was gentle.[Conclusion] There was no accumulation of organic compound during the breeding time. The NH4-N was the main form of N release; and the P release was correlated with N release, while PO4-P was the main form of P release.展开更多
[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetat...[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.展开更多
Purplish soils having high fertility with mineral nutrients inherited from the parent rock are widely distributed in the hills along the Yangtze River,especially in the Sichuan Basin.Pot and field weathering experimen...Purplish soils having high fertility with mineral nutrients inherited from the parent rock are widely distributed in the hills along the Yangtze River,especially in the Sichuan Basin.Pot and field weathering experiments were conducted to mimic rock weathering and nutrient release processes in order to better understand soil fertility and nutrient compensation. Three types of purplish rock formations formed in the Jurassic period,Shaximiao(J_2s),Suining(J_3s),and Penglaizhen (J_3p),as well as one type formed in the Cretaceous period,the Chengqiangyan group(K_1c),were used in this study. Results showed that the soil formation rate was in the range from 11.2 to 19.6 mm every year,and rock weathering was in the order of J_3s>J_3p>J_2s>K_1c.Because more rock surface was exposed to sunlight and rainfall in field conditions,pot weathering was slower than field weathering.Nutrient release rates increased with rock weathering and was in the order similar to that of rock weathering:J_3p>J_3s>J_2s>K_1c.Potassium release was the most important in all rocks;after 2 years of weathering,19.4% to 46.9% of K was released from the initial parent rocks,which suggested that K release from weathering could meet most of the crop K requirement in purplish soils.Thus,rapid release of nutrients from weathering of purplish rocks was key to nutrient replenishment and fertility of purplish soils.展开更多
The productivity of Robinia pseudoacacia(R.p.) pure forest usually declines at the late growth stage,and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tre...The productivity of Robinia pseudoacacia(R.p.) pure forest usually declines at the late growth stage,and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tree species that can be mixed with R.p., the interspecific relationship is an important issue. Therefore, we gathered the autumn litter fall from R.p. and 10 other species from the Loess Plateau of China were mixed in dual species litterbags(R.p.+each other species) and buried them in soil for a 345 days lab decay incubation. We measured the litter mass loss and nutrient contents to determine whether the nutrient release was affected by mixed species litter decomposition. The impacts of mixed litter decomposition on macro-elements release were more obvious than on micro-elements. The litters with similar substrate quality might show variable impacts on nutrients release in mixed decomposition. The C loss and release of nutrient was improved by descending order when R.p. litter was mixed with Hippophae rhamnoides, Ulmus pumila, Populus simonii, Larix principis-rupprechtii and Quercus liaotungensis(Q.l.). But, except for Q.l., only the other species were recommended as suitable mix-plants for R.p. since promoting a high turnover of the nutrient in the litter compartment and a rapid availability for tree.展开更多
An incubation experiment was carried out on plateau and slope fields to investigate the effect of plant age and rock phosphate (RP) on the organic resource (OR) quality and available N and P release of the legume ...An incubation experiment was carried out on plateau and slope fields to investigate the effect of plant age and rock phosphate (RP) on the organic resource (OR) quality and available N and P release of the legume residues, including standing biomass and surface litter. The legumes, Mueuna pruriens (L.) and Lablab purpureus (L.), were treated with or without Togo rock phosphate (RP) and were sampled at 12, 18, 24 and 30 weeks after planting. Results showed that the application of RP significantly affected the P content of the legume residues on the plateau field for the first 18 weeks, but not the other OR quality parameters, nor their N mineralization, or P release parameters. Although application of RP led to higher P contents in both legumes on the plateau field, the P contents were still far below those observed on the slope field. For both species, the biomass age appeared to have a major impact on their N, P, and polyphenol contents, but not on the liguin content. At 24 weeks, both legume N and P contents dropped to about half their values at 12 weeks of age. Residue age also significantly affected N mineralization both with and without RP addition and the net Olsen-P with RP addition. The younger residues generally led to higher N mineralization and net Olsen-P content than the older residues. The best immediate responses to herbaceous legume addition were expected from younger materials, but often at the cost of the total biomass produced and the possibility to produce seeds. The production of seeds, however, could be potentially implemented on a small area of legumes, thus invariably allowing for maturity and seed production.展开更多
Biofouling is an important factor that affects the bivalve farming industry. Fouling organisms may reduce growth and survival rate of the cultured species. Fouler are often filter feeders, so they are potential compet...Biofouling is an important factor that affects the bivalve farming industry. Fouling organisms may reduce growth and survival rate of the cultured species. Fouler are often filter feeders, so they are potential competitors for food resource with the cul- tured species. The present study was conducted to measure the impact of fouling on food uptake and nutrient release in April and June, 2006 in Daya Bay near Guangzhou, China. Results showed that fouling organisms had significant effect on food uptake and nutrient release. The chlorophyll a uptake rate of fouled scallops was 7.53 Lh-1 ± 1.416 Lh-1 and 11.94 Lh-1± 2.497 Lh-1 in April and June, respectively, significantly higher than those of cleaned scallops, i.e., 4.23 Lh-1 ± 2.744 Lh-1 and 2.57 Lh-1 ± 1.832 Lh-1 respectively. The consumption of total particulate matter by fouled scallops in April and June was 5.52 Lh-1 ± 0.818 Lh-1 and 3.07 Lh-1 ± 0.971 Lh-1, respectively; the corresponding results for cleaned scallops are 2.49 Lh-1 ± 0.614 Lh-1 and 2.37 ± 1.214 Lh-1, respectively. Fouling in- creased ammonia release significantly. The ammonia release rate of fouled scallops was 33.81 Lh-1±7.699 Lh-1 and 76.39 Lh-1 ± 9.251 Lh-1 in April and June, while cleaned scallops released 2.46 Lh-1 ± 0.511 Lh-1 and 7.23 Lh-1 ± 1.026 Lh-1 ammonia, respectively. Phos- phate release of fouled scallops was 22.72 Lh-1 ± 9.978 Lh-1 in June and cleaned scallops released phosphate 6.01 Lh-1 ± 0.876 Lh-1 in April. Therefore, fouling contributed much to food reduction and concentration increase of ammonia and phosphate in water.展开更多
The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the opti...The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.展开更多
We investigated decomposition and nutrient release patterns of leaf and sheath litter of two important highland bamboo species (viz. Phyllostachys bambusoides Sieb. (Zucc.) and Arundinaria racemosa Munro) by using...We investigated decomposition and nutrient release patterns of leaf and sheath litter of two important highland bamboo species (viz. Phyllostachys bambusoides Sieb. (Zucc.) and Arundinaria racemosa Munro) by using a litter bag technique. Our objective was to improve understanding of the addition of organic matter and nutrients to soil from the litter of two abundant highland bamboo species, species that support the local population of the region in many ways. N concentration and N/P ratio were significantly higher (p〈0.01) in leaf litter of P bambusoides. Significantly, larger values of lignin concentration, C/N ratio, and lignin/N ratio were found in the sheath litter ofA racemosa. Weight loss of both leaf and sheath litter was strongly positively correlated with N and N/P ratio, and significantly negatively correlated 6o〈0.01) with C/N ratio. Lignin/N had a negative correlation with decay rate. In both species, only lignin concentration of the litter showed strong positive correlation with N release. Litter decomposition and N release patterns were similar for the two bamboo species, whereas, P release rate from leaf litter was higher in P bambusoides and differed significantly between sheath and leaf litter for both species. The complex pattern of nutrient release through mineralization and immobilization during litter decomposition ensures nutrient availability in both managed and natural bamboo stands subjected to anthropogenic disturbances.展开更多
Turkey’s inland water ecosystem consists of 33 rivers (177.714 miles), 200 natural lakes (906.118 ha), 159 reservoirs (342.377 ha) and 750 ponds (15.500 ha). Sedimentological studies conducted on inland water ecosyst...Turkey’s inland water ecosystem consists of 33 rivers (177.714 miles), 200 natural lakes (906.118 ha), 159 reservoirs (342.377 ha) and 750 ponds (15.500 ha). Sedimentological studies conducted on inland water ecosystems during the last 15 years in Turkey can be categorized into two main topics. The first group of studies is concerned with heavy metal levels in sediment, with especial reference to the interaction between water, sediment and aquatic organisms. Additionally, the studies in question deal with the potential impacts of heavy metal concentrations on the ecosystem. The second group of studies is concerned with the role of eutrophication in the sediment as a result of serious contamination of inland water ecosystems. It is known that the sediment can directly influence the nutrient level in standing inland waters such as lakes and ponds by way of internal nutrient loading. In this context, studies regarding sediment, overlying water, sediment pore water and nutrient release from the sediment should be emphasized as these are important steps with respect to the eutrophication process. By keeping these studies in mind, the researcher in this study compiled and analyzed studies dealing with inland water ecosystems with differing nutrient levels and uses, including for drinking water, in Turkey’s drainage basins. In addition, field and laboratory studies regarding nutrient release from sediment into Turkey’s inland water ecosystems were evaluated in light of lake management practices.展开更多
With nylon mesh bags, the decomposition and nutrients release characteristics of two kinds of green manure crops, February orchid (Orychophragmus violaceus) and Hair Vetch (Vicia villosa Roth), were investigated i...With nylon mesh bags, the decomposition and nutrients release characteristics of two kinds of green manure crops, February orchid (Orychophragmus violaceus) and Hair Vetch (Vicia villosa Roth), were investigated in this study. The results showed that these two kinds of green manure crops were decomposed rapidly in the first 14 days, and then decomposed slowly. After 80 days of incubation, the decomposition rates of February orchid and Hair Vetch were 66.92% and 63.12%, respectively. Different nutrients had different release rates from the green manures. Nitrogen (N) and potassium (K) were released rapidly in the initial 7 days, and phosphorus (P) was released steadily in the 80 days of incubation. In the two kinds of green manures, the release rates all ranked as K's〉N's〉P's. The release rates of nutrients, especially P (P〈0.05), of February orchid were higher than those of Hair Vetch.展开更多
Warming and grazing,and ltter quality jointly determine liter decomposition and nutrient releases in grazing ecosystems.However,their effects have previously been studied in isolation.We conducted a two factorial expe...Warming and grazing,and ltter quality jointly determine liter decomposition and nutrient releases in grazing ecosystems.However,their effects have previously been studied in isolation.We conducted a two factorial experiment with asymmetric warming using infrared heaters and moderate grazing in an alpine meadow.Litter samples were collected from all plots in each treatment,among which some subsamples were placed in their original plots and other samples were translocated to other treatment plots to test the relative effects of each treatment on litter decomposition and nutrient releases.We found that warming rather than grazing alone significantly increased total losses of litter mass,total organic carbon,total nitrogen(TN)and total phosphorus(TP)per unit area due to increases in both mass loss rates and ltter biomass.However,grazing with warming did not affect their total mass losses because increased mass loss was offset by decreased litter biomass compared with the control.Seasonal mean soil temperature better predicted litter decomposition than litter lignin content or carbon to nitrogen ratio.There were interactions between warming and grazing,but there were no interactions between them and litter quality on litter decomposition.The temperature sensitivity of TN loss was higher than that of TP loss per unit area.Our results suggest that increased temperature has a greater effect on litter decomposition and nutrient release than change in litter quality,and that more N release from litter could result in greater P deficiency in the alpine meadow.展开更多
Nutrient release from the dredged and undredged sediments in Lake Kasumigaura were simulated under the laboratory control conditions with large-size core samples. It was found that phosphate and ammonia release fluxes...Nutrient release from the dredged and undredged sediments in Lake Kasumigaura were simulated under the laboratory control conditions with large-size core samples. It was found that phosphate and ammonia release fluxes are less in aerobic than those in anaerobic. In different simulated dredged depth, the phosphate release showed large divergence in the anaerobic than in the aerobic. There was a larger accumulated release of phosphate and ammonia at actual dredged (St. B) than the undredged (St. A) in anaerobic condition. This showed that the sludge-dredging was effective of controlling phosphorus and nitrogen release. A preliminary assessment is drawn from the experiments that the sludge-dredging work in Tsuchiura Bay of Lake Kasumigaura can reduce about 15. 9% of phospbate and 56. 2% of anunonia release from the sediments respectively.展开更多
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three diff...Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.展开更多
Microbes are decomposers of crop residues,and climatic factors and residue composition are known to influence microbial growth and community composition,which in turn regulate residue decomposition.However,the success...Microbes are decomposers of crop residues,and climatic factors and residue composition are known to influence microbial growth and community composition,which in turn regulate residue decomposition.However,the succession of the bacterial community during residue decomposition in Northeast China is not well understood.To clarify the property of bacterial community succession and the corresponding factors regulating this succession,bags containing maize residue were buried in soil in Northeast China in October,and then at different intervals over the next 2 years,samples were analyzed for residue mass and bacterial community composition.After residue burial in the soil,the cumulative residue mass loss rates were 18,69,and 77%after 5,12,and 24 months,respectively.The release of residue nitrogen,phosphorus,and carbon followed a similar pattern as mass loss,but 79%of residue potassium was released after only 1 month.The abundance,richness,and community diversity of bacteria in the residue increased rapidly and peaked after 9 or 20 months.Residue decomposition was mainly influenced by temperature and chemical composition in the early stage,and was influenced by chemical composition in the later stage.Phyla Actinobacteria,Bacteroidetes,and Firmicutes dominated the bacterial community composition in residue in the early stage,and the abundances of phyla Chloroflexi,Acidobacteria,and Saccharibacteria gradually increased in the later stage of decomposition.In conclusion,maize residue decomposition in soil was greatly influenced by temperature and residue composition in Northeast China,and the bacterial community shifted from dominance of copiotrophic populations in the early stage to an increase in oligotrophic populations in the later stage.展开更多
A plot of 24 m × 10 m under fallow management after several years of cultivation to maize (Zea mays) was planted to tea (Camellia sinensis) cuttings at 1.0 m ×0.6 m and treated with or without fertilizer...A plot of 24 m × 10 m under fallow management after several years of cultivation to maize (Zea mays) was planted to tea (Camellia sinensis) cuttings at 1.0 m ×0.6 m and treated with or without fertilizer. The tea cuttings were applied NPK 25:5:5 (reference fertilizer), cocoa husk, cow-dung, tea fluff and poultry droppings as manures, mixtures of the manures with urea in 3:1 ratio of N contents as organomineral and the control (no fertilizer), monitored for growth performance for two years at Kusuku (6°50'N; 11 °07'E), Nigeria. The organic based fertilizers generally outperformed NPK 25:5:5 and control in all the growth parameters. Organominerals resulted in an overall higher plant height, girth, number of leaves and branches compared to the manures in the first year of establishment, while the values were higher for manure treated plants in the second year. This trend was attributed to quicker release of nutrient by the organominerals in the first year, while the manures had undergone adequate decomposition for sufficient nutrient release to the advantage of the tea plants in the second year. However, comparative cost analysis showed that organominerals were more economical to achieve optimum tea production at minimum cost in the locality.展开更多
Crop residues have the potential to enhance soil fertility, but this is dependent on their biochemical properties. This study aimed to evaluate the chemical composition, and nutrients release patterns of selected crop...Crop residues have the potential to enhance soil fertility, but this is dependent on their biochemical properties. This study aimed to evaluate the chemical composition, and nutrients release patterns of selected crop residues (corn stalk, rice straw, millet straw and sorghum stalk). Thus, 20 g of each crop residue were put in litter bags and placed in a plastic pot containing 10 kg of soil with a moisture content of 40% - 60%. Five replications were considered per type of residue and some samples were taken every 4 weeks. Results showed that crop residues got a pH varying between 5.09 and 6.5. The lowest C content (33.11%) and nitrogen (0.27%) were measured in sorghum stalk when the highest C content (47.6%) and nitrogen content (0.55%) were registered in corn stalk. The highest phosphorus content (0.58%) was got in corn stalk. Potassium content was higher in millet straw than in others. The highest calcium content (0.37%) and magnesium (0.29%) were found in rice straw. There was an increase of soil chemical composition after crop residues burial. Significant increase in carbon, nitrogen, and phosphorus content was noted in soil at week 4 with the highest at week 16. At the end of the experiment, the highest C content (53.1%) and the highest nitrogen content (0.88%) in the soil were observed after burial of rice straw. The highest phosphorus content (0.82%) registered in the soil was got with millet straw. Nutrient release efficiency of crop residues occurred in the following order: rice straw > millet straw > sorghum stalk > corn stalk. This study has demonstrated that rice straw and millet straw released nutrients faster and this is beneficial for early planted crops, while sorghum stalk and corn stalk released nutrients slowly which is appropriate for long-term availability of plant nutrients.展开更多
As a kind of biological fertilizer sources, green manure can improve soil fertility and the quality of agricultural products. This paper introduced the germplasm resource of green manures in the major provinces in Chi...As a kind of biological fertilizer sources, green manure can improve soil fertility and the quality of agricultural products. This paper introduced the germplasm resource of green manures in the major provinces in China, mainly summarized the characteristics of decomposition and nutrients release of returning green manures to soils, as well as the influence on soil fertility and succeeding crops, with the aim to provide references for rational utilization of green manures and the scientific management of farmland nutrients.展开更多
The aim of this study was to evaluate the performance, nutrient utilisation and energy metabolism of broiler chicks fed 8 different wheat samples, supplemented or not with xylanase. Seven-hundred sixty eight male broi...The aim of this study was to evaluate the performance, nutrient utilisation and energy metabolism of broiler chicks fed 8 different wheat samples, supplemented or not with xylanase. Seven-hundred sixty eight male broilers(1-day-old) were distributed to 16 experimental treatments(6 replicates per treatment). The treatments were in a factorial arrangement with 8 different wheats and 2 levels of xylanase(0 or 16,000 BXU/kg). The predicted apparent metabolisable energy(AME) of the wheat samples ranged from 13.0 to 13.9 MJ/kg and all diets were formulated to contain the same amount of wheat. Body weight gain(BWG) and feed intake(FI) were measured at 21 d, as was jejunal digesta viscosity, and feed conversion ratio(FCR) calculated. On day 24, one representative bird per pen was selected to calculate whole body energetics. At 21 d, 3 chicks per replicate were randomly allocated to metabolism cages for energy and nutrient utilisation determinations, and were continued on the experimental diets until 24-d-old. No interactions were observed for any performance response variables, ileal nutrient utilisation or digesta viscosity. Xylanase improved BWG and reduced FCR and digesta viscosity(P < 0.05). Wheat influenced dry matter(DM) utilisation and xylanase increased ileal digestible energy(P = 0.04). Xylanase also improved(P < 0.05) DM and nitrogen retention. Apparent metabolisable energy and AME corrected for nitrogen(AMEn) were subject to an interaction whereby wheats 2 and 6, which returned the lowest AME and AMEn values, responded to xylanase supplementation and the remainder did not. Net energy for production and the efficiency of energy use for production were not influenced by xylanase, but were affected by wheat(P < 0.05). Despite the significant differences between wheats with regards to their nutrient utilisation and energy metabolism in birds, xylanase removed this variance and resulted in more homogeneous performance.展开更多
In this study, controlled-release fertilizers (CRFs) with five different nitrogen release periods were pre- pared by coating large urea particles with polyethylene (PE) membranes under various experimental conditi...In this study, controlled-release fertilizers (CRFs) with five different nitrogen release periods were pre- pared by coating large urea particles with polyethylene (PE) membranes under various experimental conditions. The preliminary and differential solubility rates, release periods, and membrane pore sizes of the obtained CRFs were measured using water immersion, scanning electron microscopy, and mercury porosimetry. For all CRF samples, the median pore diameters of the membranes were equal to 4.5-5.3 nm and pores with sizes smaller than 10 nm accounted for 86-96% of the total pore surface area. The obtained pore diameter distributions differed for the five studied types of CRF, having release periods of 1,2, 4, 6, and 8 months. Thus, for the CRFs with a 1-month release period, the maximum pore diameter reached a magnitude of 4000 nm, while this value did not exceed 30 nm for the CRFs with a release period of 8 months. Hence, we have established a relationship between the release period of CRFs and their effective maximum pore sizes.展开更多
基金supported by National Science Foundation of Huaihai Institute of Technology (No. KQ07102)Open Project Program of the Key Laboratory of Marine Bio-resources Sustainable Utilization, SCSIO, CAS (No. KK09001)
文摘Biofouling is an important factor that affects bivalve farming industry. Fouling organisms may reduce growth and survival rate of the cultured species. Fouler are often filter feeders, so they are potential competitors for food resource with the cultured species. The present study was conducted to measure the impact of fouling on food uptake and nutrient release in April, 2006 in Daya Bay near Guangzhou, China. Results showed that fouling organisms had significant effect on food uptake and nutrient release. The chlorophyll a uptake rate of fouled scallops was 7.53 / Lh ±1.416 / Lh in April, significantly higher than those of cleaned scallops, Le., 4.23 / Lh±2.744 / Lh. The consumption of total particulate matter by fouled scallops in April was 5.52 / Lh± 0.818 / Lh; the corresponding results for cleaned scallops are 2.49 / Lh ±0.614 / Lh Fouling increased ammonia release significantly. The ammonia release rate of fouled scallops was 33.81/Lh ±7.699 / Lh in April, while cleaned scallops released 2.46 / Lh ±0.511 / Lh ammonia. Phosphate uptake of fouled scallops was 2.01± 0.699 / Lh and cleaned scallops released phosphate 6.01 / Lh + 0.876 / Lh in April. There was not significant difference in nitrate consumption between fouled and cleaned scallops. According to the phytoplankton classification of input and output water samples, fouled scallops filtered more phytoplankton species than cleaned scallops. Therefore, this study showed that fouling contributed much to phytoplankton depletion and concentration increase of ammonia in water.
基金Supported by the National High Technology Research and Development Program of China (863 Program)(2007AA10Z239)the National Key Technology R&D Program(2006BAD03B0102)+2 种基金the Natural Science Foundation of Guangdong Province(5004159)Scienceand Technology Planning Project of Guangdong Province(2005N33201012)the Open Fund of Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes,Ministry of Agriculture(BM2007-03)~~
文摘[Objective] The study aimed to research the nutrients release of ponds sediment.[Method] The sediments which from a new pond(A) and an old one (B) these analyses used to carry out indoor experiment under the anaerobic dark condition for researching on nutrient release. The N(nitrogenous) and P(phosphorous) release were analyzed every two days.[Result] At the prophase, the N release in B was bigger than that in A, while the decline sediment release in A was gentle.[Conclusion] There was no accumulation of organic compound during the breeding time. The NH4-N was the main form of N release; and the P release was correlated with N release, while PO4-P was the main form of P release.
基金Supported by National Department Public Benefit Research Foundation(201203013)Modern Agricultural Industry Technology System(CARS-11-B-15)+2 种基金IPNI Project(JIANGSU-10)Special Fund for Agro-scientific Research in the Public Interest(201003014-1-2)Jiangsu Agriculture S&T Self-Innovation Project[CX(12)3037]~~
文摘[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.
基金the National Basic Research Program of China(No.2003CB415202)the National Natural Science Foundation of China(Nos.40571093 and 49601009)
文摘Purplish soils having high fertility with mineral nutrients inherited from the parent rock are widely distributed in the hills along the Yangtze River,especially in the Sichuan Basin.Pot and field weathering experiments were conducted to mimic rock weathering and nutrient release processes in order to better understand soil fertility and nutrient compensation. Three types of purplish rock formations formed in the Jurassic period,Shaximiao(J_2s),Suining(J_3s),and Penglaizhen (J_3p),as well as one type formed in the Cretaceous period,the Chengqiangyan group(K_1c),were used in this study. Results showed that the soil formation rate was in the range from 11.2 to 19.6 mm every year,and rock weathering was in the order of J_3s>J_3p>J_2s>K_1c.Because more rock surface was exposed to sunlight and rainfall in field conditions,pot weathering was slower than field weathering.Nutrient release rates increased with rock weathering and was in the order similar to that of rock weathering:J_3p>J_3s>J_2s>K_1c.Potassium release was the most important in all rocks;after 2 years of weathering,19.4% to 46.9% of K was released from the initial parent rocks,which suggested that K release from weathering could meet most of the crop K requirement in purplish soils.Thus,rapid release of nutrients from weathering of purplish rocks was key to nutrient replenishment and fertility of purplish soils.
基金supported by the National Science Foundation of China (No. 31070630)
文摘The productivity of Robinia pseudoacacia(R.p.) pure forest usually declines at the late growth stage,and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tree species that can be mixed with R.p., the interspecific relationship is an important issue. Therefore, we gathered the autumn litter fall from R.p. and 10 other species from the Loess Plateau of China were mixed in dual species litterbags(R.p.+each other species) and buried them in soil for a 345 days lab decay incubation. We measured the litter mass loss and nutrient contents to determine whether the nutrient release was affected by mixed species litter decomposition. The impacts of mixed litter decomposition on macro-elements release were more obvious than on micro-elements. The litters with similar substrate quality might show variable impacts on nutrients release in mixed decomposition. The C loss and release of nutrient was improved by descending order when R.p. litter was mixed with Hippophae rhamnoides, Ulmus pumila, Populus simonii, Larix principis-rupprechtii and Quercus liaotungensis(Q.l.). But, except for Q.l., only the other species were recommended as suitable mix-plants for R.p. since promoting a high turnover of the nutrient in the litter compartment and a rapid availability for tree.
基金supported by the Belgian General Administration for Development Cooperation and the International Instituteof Tropical Agriculture (IITA).
文摘An incubation experiment was carried out on plateau and slope fields to investigate the effect of plant age and rock phosphate (RP) on the organic resource (OR) quality and available N and P release of the legume residues, including standing biomass and surface litter. The legumes, Mueuna pruriens (L.) and Lablab purpureus (L.), were treated with or without Togo rock phosphate (RP) and were sampled at 12, 18, 24 and 30 weeks after planting. Results showed that the application of RP significantly affected the P content of the legume residues on the plateau field for the first 18 weeks, but not the other OR quality parameters, nor their N mineralization, or P release parameters. Although application of RP led to higher P contents in both legumes on the plateau field, the P contents were still far below those observed on the slope field. For both species, the biomass age appeared to have a major impact on their N, P, and polyphenol contents, but not on the liguin content. At 24 weeks, both legume N and P contents dropped to about half their values at 12 weeks of age. Residue age also significantly affected N mineralization both with and without RP addition and the net Olsen-P with RP addition. The younger residues generally led to higher N mineralization and net Olsen-P content than the older residues. The best immediate responses to herbaceous legume addition were expected from younger materials, but often at the cost of the total biomass produced and the possibility to produce seeds. The production of seeds, however, could be potentially implemented on a small area of legumes, thus invariably allowing for maturity and seed production.
基金supported by National Science Foundation of Huaihai Institute of Technology(No.KQ07102)National Science Foundation of China(Grant Nos.30670401 and 40576052).
文摘Biofouling is an important factor that affects the bivalve farming industry. Fouling organisms may reduce growth and survival rate of the cultured species. Fouler are often filter feeders, so they are potential competitors for food resource with the cul- tured species. The present study was conducted to measure the impact of fouling on food uptake and nutrient release in April and June, 2006 in Daya Bay near Guangzhou, China. Results showed that fouling organisms had significant effect on food uptake and nutrient release. The chlorophyll a uptake rate of fouled scallops was 7.53 Lh-1 ± 1.416 Lh-1 and 11.94 Lh-1± 2.497 Lh-1 in April and June, respectively, significantly higher than those of cleaned scallops, i.e., 4.23 Lh-1 ± 2.744 Lh-1 and 2.57 Lh-1 ± 1.832 Lh-1 respectively. The consumption of total particulate matter by fouled scallops in April and June was 5.52 Lh-1 ± 0.818 Lh-1 and 3.07 Lh-1 ± 0.971 Lh-1, respectively; the corresponding results for cleaned scallops are 2.49 Lh-1 ± 0.614 Lh-1 and 2.37 ± 1.214 Lh-1, respectively. Fouling in- creased ammonia release significantly. The ammonia release rate of fouled scallops was 33.81 Lh-1±7.699 Lh-1 and 76.39 Lh-1 ± 9.251 Lh-1 in April and June, while cleaned scallops released 2.46 Lh-1 ± 0.511 Lh-1 and 7.23 Lh-1 ± 1.026 Lh-1 ammonia, respectively. Phos- phate release of fouled scallops was 22.72 Lh-1 ± 9.978 Lh-1 in June and cleaned scallops released phosphate 6.01 Lh-1 ± 0.876 Lh-1 in April. Therefore, fouling contributed much to food reduction and concentration increase of ammonia and phosphate in water.
基金supported by a key project of Liaoning Province (2006215005)China Ministry of Education (209032)
文摘The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.
文摘We investigated decomposition and nutrient release patterns of leaf and sheath litter of two important highland bamboo species (viz. Phyllostachys bambusoides Sieb. (Zucc.) and Arundinaria racemosa Munro) by using a litter bag technique. Our objective was to improve understanding of the addition of organic matter and nutrients to soil from the litter of two abundant highland bamboo species, species that support the local population of the region in many ways. N concentration and N/P ratio were significantly higher (p〈0.01) in leaf litter of P bambusoides. Significantly, larger values of lignin concentration, C/N ratio, and lignin/N ratio were found in the sheath litter ofA racemosa. Weight loss of both leaf and sheath litter was strongly positively correlated with N and N/P ratio, and significantly negatively correlated 6o〈0.01) with C/N ratio. Lignin/N had a negative correlation with decay rate. In both species, only lignin concentration of the litter showed strong positive correlation with N release. Litter decomposition and N release patterns were similar for the two bamboo species, whereas, P release rate from leaf litter was higher in P bambusoides and differed significantly between sheath and leaf litter for both species. The complex pattern of nutrient release through mineralization and immobilization during litter decomposition ensures nutrient availability in both managed and natural bamboo stands subjected to anthropogenic disturbances.
文摘Turkey’s inland water ecosystem consists of 33 rivers (177.714 miles), 200 natural lakes (906.118 ha), 159 reservoirs (342.377 ha) and 750 ponds (15.500 ha). Sedimentological studies conducted on inland water ecosystems during the last 15 years in Turkey can be categorized into two main topics. The first group of studies is concerned with heavy metal levels in sediment, with especial reference to the interaction between water, sediment and aquatic organisms. Additionally, the studies in question deal with the potential impacts of heavy metal concentrations on the ecosystem. The second group of studies is concerned with the role of eutrophication in the sediment as a result of serious contamination of inland water ecosystems. It is known that the sediment can directly influence the nutrient level in standing inland waters such as lakes and ponds by way of internal nutrient loading. In this context, studies regarding sediment, overlying water, sediment pore water and nutrient release from the sediment should be emphasized as these are important steps with respect to the eutrophication process. By keeping these studies in mind, the researcher in this study compiled and analyzed studies dealing with inland water ecosystems with differing nutrient levels and uses, including for drinking water, in Turkey’s drainage basins. In addition, field and laboratory studies regarding nutrient release from sediment into Turkey’s inland water ecosystems were evaluated in light of lake management practices.
文摘With nylon mesh bags, the decomposition and nutrients release characteristics of two kinds of green manure crops, February orchid (Orychophragmus violaceus) and Hair Vetch (Vicia villosa Roth), were investigated in this study. The results showed that these two kinds of green manure crops were decomposed rapidly in the first 14 days, and then decomposed slowly. After 80 days of incubation, the decomposition rates of February orchid and Hair Vetch were 66.92% and 63.12%, respectively. Different nutrients had different release rates from the green manures. Nitrogen (N) and potassium (K) were released rapidly in the initial 7 days, and phosphorus (P) was released steadily in the 80 days of incubation. In the two kinds of green manures, the release rates all ranked as K's〉N's〉P's. The release rates of nutrients, especially P (P〈0.05), of February orchid were higher than those of Hair Vetch.
基金the Joint Key Research Fund under a cooperative agreement between the National Natural Science Foundation of China(NSFC)and Tibet Autonomous Region(TAR)(U20A2005)the National Natural Science Foundation of China(41731175,31872994_and 31770524)+1 种基金the Strategic Priority Research Program A of theChineseAcademyof Sciences(XDA20050101)the Second Tibetan Plateau Scientific Expedition and Research(STEP) program(2019QZKK0608 and 2019QZKK0302)。
文摘Warming and grazing,and ltter quality jointly determine liter decomposition and nutrient releases in grazing ecosystems.However,their effects have previously been studied in isolation.We conducted a two factorial experiment with asymmetric warming using infrared heaters and moderate grazing in an alpine meadow.Litter samples were collected from all plots in each treatment,among which some subsamples were placed in their original plots and other samples were translocated to other treatment plots to test the relative effects of each treatment on litter decomposition and nutrient releases.We found that warming rather than grazing alone significantly increased total losses of litter mass,total organic carbon,total nitrogen(TN)and total phosphorus(TP)per unit area due to increases in both mass loss rates and ltter biomass.However,grazing with warming did not affect their total mass losses because increased mass loss was offset by decreased litter biomass compared with the control.Seasonal mean soil temperature better predicted litter decomposition than litter lignin content or carbon to nitrogen ratio.There were interactions between warming and grazing,but there were no interactions between them and litter quality on litter decomposition.The temperature sensitivity of TN loss was higher than that of TP loss per unit area.Our results suggest that increased temperature has a greater effect on litter decomposition and nutrient release than change in litter quality,and that more N release from litter could result in greater P deficiency in the alpine meadow.
文摘Nutrient release from the dredged and undredged sediments in Lake Kasumigaura were simulated under the laboratory control conditions with large-size core samples. It was found that phosphate and ammonia release fluxes are less in aerobic than those in anaerobic. In different simulated dredged depth, the phosphate release showed large divergence in the anaerobic than in the aerobic. There was a larger accumulated release of phosphate and ammonia at actual dredged (St. B) than the undredged (St. A) in anaerobic condition. This showed that the sludge-dredging was effective of controlling phosphorus and nitrogen release. A preliminary assessment is drawn from the experiments that the sludge-dredging work in Tsuchiura Bay of Lake Kasumigaura can reduce about 15. 9% of phospbate and 56. 2% of anunonia release from the sediments respectively.
基金Project supported by the National Natural Science Foundation of China (No. 30530630)the Major State Basic Research and Development Program of China (No. G2000046802-05)the National Key Technologies Research and Development Program of China during the Tenth Five-Year Period (No. 2001BA606A-05)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX1-02)
文摘Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.
基金the National Key Research&Development Program of China(2016YFD0200102 and 2018YFD0201001).
文摘Microbes are decomposers of crop residues,and climatic factors and residue composition are known to influence microbial growth and community composition,which in turn regulate residue decomposition.However,the succession of the bacterial community during residue decomposition in Northeast China is not well understood.To clarify the property of bacterial community succession and the corresponding factors regulating this succession,bags containing maize residue were buried in soil in Northeast China in October,and then at different intervals over the next 2 years,samples were analyzed for residue mass and bacterial community composition.After residue burial in the soil,the cumulative residue mass loss rates were 18,69,and 77%after 5,12,and 24 months,respectively.The release of residue nitrogen,phosphorus,and carbon followed a similar pattern as mass loss,but 79%of residue potassium was released after only 1 month.The abundance,richness,and community diversity of bacteria in the residue increased rapidly and peaked after 9 or 20 months.Residue decomposition was mainly influenced by temperature and chemical composition in the early stage,and was influenced by chemical composition in the later stage.Phyla Actinobacteria,Bacteroidetes,and Firmicutes dominated the bacterial community composition in residue in the early stage,and the abundances of phyla Chloroflexi,Acidobacteria,and Saccharibacteria gradually increased in the later stage of decomposition.In conclusion,maize residue decomposition in soil was greatly influenced by temperature and residue composition in Northeast China,and the bacterial community shifted from dominance of copiotrophic populations in the early stage to an increase in oligotrophic populations in the later stage.
文摘A plot of 24 m × 10 m under fallow management after several years of cultivation to maize (Zea mays) was planted to tea (Camellia sinensis) cuttings at 1.0 m ×0.6 m and treated with or without fertilizer. The tea cuttings were applied NPK 25:5:5 (reference fertilizer), cocoa husk, cow-dung, tea fluff and poultry droppings as manures, mixtures of the manures with urea in 3:1 ratio of N contents as organomineral and the control (no fertilizer), monitored for growth performance for two years at Kusuku (6°50'N; 11 °07'E), Nigeria. The organic based fertilizers generally outperformed NPK 25:5:5 and control in all the growth parameters. Organominerals resulted in an overall higher plant height, girth, number of leaves and branches compared to the manures in the first year of establishment, while the values were higher for manure treated plants in the second year. This trend was attributed to quicker release of nutrient by the organominerals in the first year, while the manures had undergone adequate decomposition for sufficient nutrient release to the advantage of the tea plants in the second year. However, comparative cost analysis showed that organominerals were more economical to achieve optimum tea production at minimum cost in the locality.
文摘Crop residues have the potential to enhance soil fertility, but this is dependent on their biochemical properties. This study aimed to evaluate the chemical composition, and nutrients release patterns of selected crop residues (corn stalk, rice straw, millet straw and sorghum stalk). Thus, 20 g of each crop residue were put in litter bags and placed in a plastic pot containing 10 kg of soil with a moisture content of 40% - 60%. Five replications were considered per type of residue and some samples were taken every 4 weeks. Results showed that crop residues got a pH varying between 5.09 and 6.5. The lowest C content (33.11%) and nitrogen (0.27%) were measured in sorghum stalk when the highest C content (47.6%) and nitrogen content (0.55%) were registered in corn stalk. The highest phosphorus content (0.58%) was got in corn stalk. Potassium content was higher in millet straw than in others. The highest calcium content (0.37%) and magnesium (0.29%) were found in rice straw. There was an increase of soil chemical composition after crop residues burial. Significant increase in carbon, nitrogen, and phosphorus content was noted in soil at week 4 with the highest at week 16. At the end of the experiment, the highest C content (53.1%) and the highest nitrogen content (0.88%) in the soil were observed after burial of rice straw. The highest phosphorus content (0.82%) registered in the soil was got with millet straw. Nutrient release efficiency of crop residues occurred in the following order: rice straw > millet straw > sorghum stalk > corn stalk. This study has demonstrated that rice straw and millet straw released nutrients faster and this is beneficial for early planted crops, while sorghum stalk and corn stalk released nutrients slowly which is appropriate for long-term availability of plant nutrients.
基金Supported by the Natural Science Foundation of Guangxi(2017GXNSFBA198204)the Key Science and Technology Project of Guangxi(Guike AA17204059-9&AA172040459-10)+1 种基金the Planning Project for Scientific Research and Technological Development of Xixiangtang District,Nanning City(2017-2-10309)the Special Fund for the Fundamental Research of Guangxi Academy of Agricultural Sciences(Guinongke 2018YT07&2018YM28)
文摘As a kind of biological fertilizer sources, green manure can improve soil fertility and the quality of agricultural products. This paper introduced the germplasm resource of green manures in the major provinces in China, mainly summarized the characteristics of decomposition and nutrients release of returning green manures to soils, as well as the influence on soil fertility and succeeding crops, with the aim to provide references for rational utilization of green manures and the scientific management of farmland nutrients.
文摘The aim of this study was to evaluate the performance, nutrient utilisation and energy metabolism of broiler chicks fed 8 different wheat samples, supplemented or not with xylanase. Seven-hundred sixty eight male broilers(1-day-old) were distributed to 16 experimental treatments(6 replicates per treatment). The treatments were in a factorial arrangement with 8 different wheats and 2 levels of xylanase(0 or 16,000 BXU/kg). The predicted apparent metabolisable energy(AME) of the wheat samples ranged from 13.0 to 13.9 MJ/kg and all diets were formulated to contain the same amount of wheat. Body weight gain(BWG) and feed intake(FI) were measured at 21 d, as was jejunal digesta viscosity, and feed conversion ratio(FCR) calculated. On day 24, one representative bird per pen was selected to calculate whole body energetics. At 21 d, 3 chicks per replicate were randomly allocated to metabolism cages for energy and nutrient utilisation determinations, and were continued on the experimental diets until 24-d-old. No interactions were observed for any performance response variables, ileal nutrient utilisation or digesta viscosity. Xylanase improved BWG and reduced FCR and digesta viscosity(P < 0.05). Wheat influenced dry matter(DM) utilisation and xylanase increased ileal digestible energy(P = 0.04). Xylanase also improved(P < 0.05) DM and nitrogen retention. Apparent metabolisable energy and AME corrected for nitrogen(AMEn) were subject to an interaction whereby wheats 2 and 6, which returned the lowest AME and AMEn values, responded to xylanase supplementation and the remainder did not. Net energy for production and the efficiency of energy use for production were not influenced by xylanase, but were affected by wheat(P < 0.05). Despite the significant differences between wheats with regards to their nutrient utilisation and energy metabolism in birds, xylanase removed this variance and resulted in more homogeneous performance.
基金This work described above was financially supported by National Key R&D Program of China (No. 2017YFD0200703), and the General Program of Natural Science Foundation of China (grant number 31572204). The authors would like to thank Hongying Cai from the Department of Chemical Engineering of Tsinghua Univer- sity for his help with SEM observations and Dongwu Chang from the Department of Thermal Energy Engineering of Tsinghua University for assistance with MP measurements.
文摘In this study, controlled-release fertilizers (CRFs) with five different nitrogen release periods were pre- pared by coating large urea particles with polyethylene (PE) membranes under various experimental conditions. The preliminary and differential solubility rates, release periods, and membrane pore sizes of the obtained CRFs were measured using water immersion, scanning electron microscopy, and mercury porosimetry. For all CRF samples, the median pore diameters of the membranes were equal to 4.5-5.3 nm and pores with sizes smaller than 10 nm accounted for 86-96% of the total pore surface area. The obtained pore diameter distributions differed for the five studied types of CRF, having release periods of 1,2, 4, 6, and 8 months. Thus, for the CRFs with a 1-month release period, the maximum pore diameter reached a magnitude of 4000 nm, while this value did not exceed 30 nm for the CRFs with a release period of 8 months. Hence, we have established a relationship between the release period of CRFs and their effective maximum pore sizes.