Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this stu...Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.展开更多
Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satel...Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satellite propulsion system.An extended object-oriented Petri net(EOOPN)method was proposed to facilitate the reliability modelling of satellite propulsion system in the paper.The proposed method was specified for modelling of phased mission system,and it could be implemented by generating combination of Petri net(PN)principles and object-oriented(OO)programming.The effectiveness of the proposed method was demonstrated through the reliability modelling of a satellite propulsion system with EOOPN.The major advantage of the proposed method is that the dimension of net model can be reduced significantly,and phased mission system at system,phase,or component levels can be respectively depicted.Furthermore,the state-space explosion problem is solved by the proposed EOOPN model efficiently.展开更多
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
文摘Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.
文摘Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satellite propulsion system.An extended object-oriented Petri net(EOOPN)method was proposed to facilitate the reliability modelling of satellite propulsion system in the paper.The proposed method was specified for modelling of phased mission system,and it could be implemented by generating combination of Petri net(PN)principles and object-oriented(OO)programming.The effectiveness of the proposed method was demonstrated through the reliability modelling of a satellite propulsion system with EOOPN.The major advantage of the proposed method is that the dimension of net model can be reduced significantly,and phased mission system at system,phase,or component levels can be respectively depicted.Furthermore,the state-space explosion problem is solved by the proposed EOOPN model efficiently.