The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation acc...The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.展开更多
Taking cities as objects being observed,urban remote sensing is an important branch of remote sensing.Given the complexity of the urban scenes,urban remote sensing observation requires data with a high temporal resolu...Taking cities as objects being observed,urban remote sensing is an important branch of remote sensing.Given the complexity of the urban scenes,urban remote sensing observation requires data with a high temporal resolution,high spatial resolution,and high spectral resolution.To the best of our knowledge,however,no satellite owns all the above character-istics.Thus,it is necessary to coordinate data from existing remote sensing satellites to meet the needs of urban observation.In this study,we abstracted the urban remote sensing observation process and proposed an urban spatio-temporal-spectral observation model,filling the gap of no existing urban remote sensing framework.In this study,we present four applications to elaborate on the specific applications of the proposed model:1)a spatiotemporal fusion model for synthesizing ideal data,2)a spatio-spectral observation model for urban vegetation biomass estimation,3)a temporal-spectral observation model for urban flood mapping,and 4)a spatio-temporal-spectral model for impervious surface extraction.We believe that the proposed model,although in a conceptual stage,can largely benefit urban observation by providing a new data fusion paradigm.展开更多
In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angu...In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angular observation model to integrate observations from UAV and mobile mapping vehicle platform,realizing a joint,coordinated observation operation from both air and ground.We develop a multi-source remote sensing data acquisition system to effectively acquire multi-angle data of complex urban scenes.Multi-source data fusion solves the missing data problem caused by occlusion and achieves accurate,rapid,and complete collection of holographic spatial and temporal information in complex urban scenes.We carried out an experiment on Baisha Town,Chongqing,China and obtained multi-sensor,multi-angle data from UAV and mobile mapping vehicle.We first extracted the point cloud from UAV and then integrated the UAV and mobile mapping vehicle point cloud.The inte-grated results combined both the characteristics of UAV and mobile mapping vehicle point cloud,confirming the practicability of the proposed joint data acquisition platform and the effectiveness of spatio-temporal-spectral-angular observation model.Compared with the observation from UAV or mobile mapping vehicle alone,the integrated system provides an effective data acquisition solution toward comprehensive urban monitoring.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase tra...The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.展开更多
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons ...The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973, 1974, 1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter > 20um is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmospheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and observed rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L. , which corresponds to the level at almost 3 / 4 th of the total vertical thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L. The dominant physical mechanism of rain-formation in these summer monsoon clouds is the collision-coalescence process.展开更多
This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transm...This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.展开更多
When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energ...When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.展开更多
The combination of spin-orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde-Ferrell (FF) superf...The combination of spin-orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde-Ferrell (FF) superfluid. However, atom loss and heating related to SOC have impeded the successful observation of FF state until now. In this work, we propose the realization of spin-balanced FF superfluid in a honeycomb lattice without SOC and the Zeeman field. A key ingredient of our scheme is generating complex hopping terms in original honeycomb lattices by periodical driving. In our model the ground state is always the FF state, thus the experimental observation has no need of fine tuning. The other advantages of our scheme are its simplicity and feasibility, and thus may open a new route for observing FF superfluids.展开更多
In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea f...In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea from 2 to 5 May 2009. The evolutionary process of this event was documented by using Multifunctional Transport Satellites-1 (MTSAT-1) visible satellite imagery. The synoptic situation, sounding profiles at two selected stations were analyzed. The difference between the air temperature and sea surface temperature during the sea fog event over the entire sea region was also analyzed. In order to better understand this event, an RAMS modeling with a 15 km×15 km resolution was performed. The model successfully reproduced the main characteristics of this sea fog event. The simulated height of fog top and the area of lower atmospheric visibility derived from the RAMS modeling results showed good agreement with the sea fog area identified from the satellite imagery. Examinations of both observational data and RAMS modeling results suggested that advection cooling seemed to play an important role in the formation of this sea fog event.展开更多
A new hybrid model rotor flux observer, based on a new voltage model, is presented. In the first place, the voltage model of an induction machine was constructed by using the modeling method discussed in this paper an...A new hybrid model rotor flux observer, based on a new voltage model, is presented. In the first place, the voltage model of an induction machine was constructed by using the modeling method discussed in this paper and then the current model using a flux feedback was adopted in this flux observer. Secondly, the two models were com- bined via a filter and then the rotor flux observer was established. In the M-T synchronous coordinate, the observer was analyzed theoretically and several important functions were derived. A comparison between the observer and the traditional models was made using Matlab software. The simulation results show that the observer model had a better performance than the traditional model.展开更多
The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015...The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015 at the same station, The station is situated on Gamov peninsular (42.58° N, 131.15° E, Russia) at the coast of Japan Sea, This region constitutes the eastern boundary of Eurasia. This major continental tectonic feature is associated with a seismic activity, high heat flow and anomalous thickness of earth's crust. The goal of the observation was the investigation of gravity variation with time and seismicity situation monitoring. Gravity observation was developed at special basement by absolute gravimeter (GABL type) and by spring gravimeter (SCINREX CG-5and gPhone type). Tidal models were tested by results of observation with spring gravimeters. Reduction task was solved, as the experimental data received from different points of Shults Cape Observatory was used. Applied reduction coefficient is 203.3 12Gal m l, and agrees with theoretical calculation. Next goal was studying structure of earth's crust by means of gravity models. Gravity anomaly varied from 30 mGal to 46 mGal, which also depend on difference reference system, Experimental results were used for testing of the structure of continental boundary, which also depends on the sea bottom flexion. Thickness of elastic layer was estimated from 12 km to 18 km by using different models.展开更多
Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities amon...Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities among the angles of targets,which may result inmisinterpretation of such targets.In order to cope up with such ambiguities,various techniques have been proposed.Unfortunately,none of them fully resolved such a problem because of rank deficiency and high computational cost.We aimed to resolve such a problem by proposing an algorithm using differential geometry.The proposed algorithm uses a specially designed doublet antenna array,which is made up of two individual linear arrays.Two angle observation models,ambiguous observation model(AOM)and estimated observation model(EOM),are derived for each individual array.The ambiguous set of angles is contained in the AOM,which is obtained from the corresponding array elements using differential geometry.The EOM for each array,on the other hand,contains estimated angles of all sources impinging signals on each array,as calculated by a direction-finding algorithm such as the genetic algorithm.The algorithm then contrasts the EOM of each array with its AOM,selecting the output of that array whose EOM has the minimum correlation with its corresponding AOM.In comparison to existing techniques,the proposed algorithm improves estimation accuracy and has greater precision in antenna aperture selection,resulting in improved resolution capabilities and the potential to be used more widely in practical scenarios.The simulation results using MATLAB authenticates the effectiveness of the proposed algorithm.展开更多
The meaning to research the potential of VLBI for geodetic applications is summarized. And the observation models and their related parameters of geodetic interest are investigated. Then, the principle and method of u...The meaning to research the potential of VLBI for geodetic applications is summarized. And the observation models and their related parameters of geodetic interest are investigated. Then, the principle and method of using the random model in VLBI data processing are investigated. With the world wide VLBI data from 2000-2004, the conditions to compute the parameters of geodetic interest are introduced, and so are the computing methods and processes. And the computed resuits of the parameters of geodetic interest are analyzed.展开更多
We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions, and occlusions. We mainly improve the observation model ...We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions, and occlusions. We mainly improve the observation model and re-sampling process in a particle filter. We use on-line updating appearance model, affine transformation, and M-estimation to construct an adaptive observation model. On-line updating appearance model can adapt to the changes of illumination partially. Affine transformation-based similarity measurement is introduced to tackle pose variantions, and M-estimation is used to handle the occluded object in computing observation likelihood. To take advantage of the most recent observation and produce a suboptimal Gaussian proposal distribution, we incorporate Kalman filter into a particle filter to enhance the performance of the resampling process. To estimate the posterior probability density properly with lower computational complexity, we only employ a single Kalman filter to propagate Gaussian distribution. Experimental results have demonstrated the effectiveness and robustness of the proposed algorithm by tracking visual objects in the recorded video sequences.展开更多
This paper is based on the fixed follow-up observation data of the countryside in Shanxi and Zhejiang provinces of china. It gives positive analysis of the tax and fee burden of rural households in these two provinces...This paper is based on the fixed follow-up observation data of the countryside in Shanxi and Zhejiang provinces of china. It gives positive analysis of the tax and fee burden of rural households in these two provinces as weU as the tendency of its development since the mid-1980s. It is found from the analysis that the model of tax and fee burden is completely different between these two provinces and each model brings quite different effects. In the Shanxi burden model focusing on the collection of fees, farmers pay less taxes and fees, but they have to pay more compared with their income, thus resulting in a lack of the stamina for rural household economy even causing the economy to be thrown into a state of stagnancy. In the Zhejiang burden model focusing on tax, farmers pay more tax, but its percentage is lower compared with their income, with the result that the rural household economy has a strong stamina for growth. With the coming system of "transforming fees into taxes" to be trial-implemented in the rural areas, the pilot experience in Anhui Province is truly important, but comparatively speaking, the practice in Zhejiang is of more immediate significance.展开更多
This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The...This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.展开更多
The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC sys...The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC system with stator flux hexagon and circle trajectories. The simulation waveforms of flux, torque and current characters with two flux trajectories were given. Experiments were carried out in an AC drive system based on induction motor and two-level inverter. A dual-CPU structure was used and the communication with two CPUs was obtained by a dual-port RAM in this system.展开更多
In this paper, the theory and method, obtaining the tomographic determination of three-dimensional velocity structure of the crust by use of the joint inversion of explosion and earthquake data, are given. The velocit...In this paper, the theory and method, obtaining the tomographic determination of three-dimensional velocity structure of the crust by use of the joint inversion of explosion and earthquake data, are given. The velocity distribution of the crust is regarded as a continuous function of the spatial coordinates without parametrization of the velocity model ahead, so that the inversion solution would not be influenced by different parametrization procedures.The expressions of integration kernels, which relates the two kinds of data sets, are also given. The authors have processed the observed data in Tangshan earthquake region by the method proposed in this paper, and obtained the tomographic results of the middle and upper crust structures in this region. The comparison of these results with the result obtained only by the explosion data, has also been made.展开更多
An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transform...An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transformation method is used to establish a geometric model of the observation scene,which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame.Then,an approach for dynamic electromagnetic scattering simulation is proposed.Finally,a fast-computing method based on sparsity in the time domain,space domain,and frequency domain is proposed.The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets.The error between the sparsity-based method and the benchmark is small,proving the effectiveness of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China(61502257,41304031)
文摘The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.
基金This work is supported by the National Key Research and Development Program of China[grant number 2018YFB2100501]the Key Research and Development Program of Yunnan province in China[grant number 2018IB023]+2 种基金the Research Project from the Ministry of Natural Resources of China[grant number 4201⁃⁃240100123]the National Natural Science Foundation of China[grant numbers 41771452,41771454,41890820,and 41901340]the Natural Science Fund of Hubei Province in China[grant number 2018CFA007].
文摘Taking cities as objects being observed,urban remote sensing is an important branch of remote sensing.Given the complexity of the urban scenes,urban remote sensing observation requires data with a high temporal resolution,high spatial resolution,and high spectral resolution.To the best of our knowledge,however,no satellite owns all the above character-istics.Thus,it is necessary to coordinate data from existing remote sensing satellites to meet the needs of urban observation.In this study,we abstracted the urban remote sensing observation process and proposed an urban spatio-temporal-spectral observation model,filling the gap of no existing urban remote sensing framework.In this study,we present four applications to elaborate on the specific applications of the proposed model:1)a spatiotemporal fusion model for synthesizing ideal data,2)a spatio-spectral observation model for urban vegetation biomass estimation,3)a temporal-spectral observation model for urban flood mapping,and 4)a spatio-temporal-spectral model for impervious surface extraction.We believe that the proposed model,although in a conceptual stage,can largely benefit urban observation by providing a new data fusion paradigm.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 42090012,41771452,41771454,and 41901340].
文摘In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angular observation model to integrate observations from UAV and mobile mapping vehicle platform,realizing a joint,coordinated observation operation from both air and ground.We develop a multi-source remote sensing data acquisition system to effectively acquire multi-angle data of complex urban scenes.Multi-source data fusion solves the missing data problem caused by occlusion and achieves accurate,rapid,and complete collection of holographic spatial and temporal information in complex urban scenes.We carried out an experiment on Baisha Town,Chongqing,China and obtained multi-sensor,multi-angle data from UAV and mobile mapping vehicle.We first extracted the point cloud from UAV and then integrated the UAV and mobile mapping vehicle point cloud.The inte-grated results combined both the characteristics of UAV and mobile mapping vehicle point cloud,confirming the practicability of the proposed joint data acquisition platform and the effectiveness of spatio-temporal-spectral-angular observation model.Compared with the observation from UAV or mobile mapping vehicle alone,the integrated system provides an effective data acquisition solution toward comprehensive urban monitoring.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700the National Science Fund for Distinguished Young Scholars under Grant No 11425523+4 种基金the National Natural Science Foundation of China under Grant Nos 11375167,11227901,91021005 and 11575173the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities
文摘The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.
文摘The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973, 1974, 1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter > 20um is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmospheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and observed rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L. , which corresponds to the level at almost 3 / 4 th of the total vertical thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L. The dominant physical mechanism of rain-formation in these summer monsoon clouds is the collision-coalescence process.
文摘This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.
文摘When there exists anisotropy in underground media elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20130424the National Natural Science Foundation of China under Grant No 11547047
文摘The combination of spin-orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde-Ferrell (FF) superfluid. However, atom loss and heating related to SOC have impeded the successful observation of FF state until now. In this work, we propose the realization of spin-balanced FF superfluid in a honeycomb lattice without SOC and the Zeeman field. A key ingredient of our scheme is generating complex hopping terms in original honeycomb lattices by periodical driving. In our model the ground state is always the FF state, thus the experimental observation has no need of fine tuning. The other advantages of our scheme are its simplicity and feasibility, and thus may open a new route for observing FF superfluids.
基金supported by the National Natural Science Foundation of China under the grant numbers 41175006 and 40675060the Chinese Meteorological Administration under thegrant GYHY200706031+1 种基金the Chinese Ministry of Science and Technology under the 973 Project grant number 2009CB421504the financial support of the Student Research and Development Program of the Ocean University of China under the grant number 1111010101
文摘In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea from 2 to 5 May 2009. The evolutionary process of this event was documented by using Multifunctional Transport Satellites-1 (MTSAT-1) visible satellite imagery. The synoptic situation, sounding profiles at two selected stations were analyzed. The difference between the air temperature and sea surface temperature during the sea fog event over the entire sea region was also analyzed. In order to better understand this event, an RAMS modeling with a 15 km×15 km resolution was performed. The model successfully reproduced the main characteristics of this sea fog event. The simulated height of fog top and the area of lower atmospheric visibility derived from the RAMS modeling results showed good agreement with the sea fog area identified from the satellite imagery. Examinations of both observational data and RAMS modeling results suggested that advection cooling seemed to play an important role in the formation of this sea fog event.
基金Projects (00KJD470002, 03KJD470036) supported by the Natural Science Foundation of the Bureau of Education Jiangsu Province
文摘A new hybrid model rotor flux observer, based on a new voltage model, is presented. In the first place, the voltage model of an induction machine was constructed by using the modeling method discussed in this paper and then the current model using a flux feedback was adopted in this flux observer. Secondly, the two models were com- bined via a filter and then the rotor flux observer was established. In the M-T synchronous coordinate, the observer was analyzed theoretically and several important functions were derived. A comparison between the observer and the traditional models was made using Matlab software. The simulation results show that the observer model had a better performance than the traditional model.
文摘The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015 at the same station, The station is situated on Gamov peninsular (42.58° N, 131.15° E, Russia) at the coast of Japan Sea, This region constitutes the eastern boundary of Eurasia. This major continental tectonic feature is associated with a seismic activity, high heat flow and anomalous thickness of earth's crust. The goal of the observation was the investigation of gravity variation with time and seismicity situation monitoring. Gravity observation was developed at special basement by absolute gravimeter (GABL type) and by spring gravimeter (SCINREX CG-5and gPhone type). Tidal models were tested by results of observation with spring gravimeters. Reduction task was solved, as the experimental data received from different points of Shults Cape Observatory was used. Applied reduction coefficient is 203.3 12Gal m l, and agrees with theoretical calculation. Next goal was studying structure of earth's crust by means of gravity models. Gravity anomaly varied from 30 mGal to 46 mGal, which also depend on difference reference system, Experimental results were used for testing of the structure of continental boundary, which also depends on the sea bottom flexion. Thickness of elastic layer was estimated from 12 km to 18 km by using different models.
文摘Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities among the angles of targets,which may result inmisinterpretation of such targets.In order to cope up with such ambiguities,various techniques have been proposed.Unfortunately,none of them fully resolved such a problem because of rank deficiency and high computational cost.We aimed to resolve such a problem by proposing an algorithm using differential geometry.The proposed algorithm uses a specially designed doublet antenna array,which is made up of two individual linear arrays.Two angle observation models,ambiguous observation model(AOM)and estimated observation model(EOM),are derived for each individual array.The ambiguous set of angles is contained in the AOM,which is obtained from the corresponding array elements using differential geometry.The EOM for each array,on the other hand,contains estimated angles of all sources impinging signals on each array,as calculated by a direction-finding algorithm such as the genetic algorithm.The algorithm then contrasts the EOM of each array with its AOM,selecting the output of that array whose EOM has the minimum correlation with its corresponding AOM.In comparison to existing techniques,the proposed algorithm improves estimation accuracy and has greater precision in antenna aperture selection,resulting in improved resolution capabilities and the potential to be used more widely in practical scenarios.The simulation results using MATLAB authenticates the effectiveness of the proposed algorithm.
基金Funded by the National 973 Program of China (No.2006CB701301)the Project of University Education and Research of HubeiProvince (No.20053039).
文摘The meaning to research the potential of VLBI for geodetic applications is summarized. And the observation models and their related parameters of geodetic interest are investigated. Then, the principle and method of using the random model in VLBI data processing are investigated. With the world wide VLBI data from 2000-2004, the conditions to compute the parameters of geodetic interest are introduced, and so are the computing methods and processes. And the computed resuits of the parameters of geodetic interest are analyzed.
基金supported by National Natural Science Foundation of China (No.40627001)the 985 Innovation Project on Information Technique of Xiamen University (2004–2008)
文摘We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions, and occlusions. We mainly improve the observation model and re-sampling process in a particle filter. We use on-line updating appearance model, affine transformation, and M-estimation to construct an adaptive observation model. On-line updating appearance model can adapt to the changes of illumination partially. Affine transformation-based similarity measurement is introduced to tackle pose variantions, and M-estimation is used to handle the occluded object in computing observation likelihood. To take advantage of the most recent observation and produce a suboptimal Gaussian proposal distribution, we incorporate Kalman filter into a particle filter to enhance the performance of the resampling process. To estimate the posterior probability density properly with lower computational complexity, we only employ a single Kalman filter to propagate Gaussian distribution. Experimental results have demonstrated the effectiveness and robustness of the proposed algorithm by tracking visual objects in the recorded video sequences.
基金This paper was prepared for the 25th International Conference of Agricultural Economists, August 16-22, 2003, Durban, South Africa. This project is financed by the National Natural Science Foundation of China (70173016) and Shanxi Province Soft Science Research Program (011002). During the research, we have obtained the full support of Shanxi Province, Zhejiang Province and National Rural Fixed 0bservation Network 0ffice. We hereby show our thanks to all of them.
文摘This paper is based on the fixed follow-up observation data of the countryside in Shanxi and Zhejiang provinces of china. It gives positive analysis of the tax and fee burden of rural households in these two provinces as weU as the tendency of its development since the mid-1980s. It is found from the analysis that the model of tax and fee burden is completely different between these two provinces and each model brings quite different effects. In the Shanxi burden model focusing on the collection of fees, farmers pay less taxes and fees, but they have to pay more compared with their income, thus resulting in a lack of the stamina for rural household economy even causing the economy to be thrown into a state of stagnancy. In the Zhejiang burden model focusing on tax, farmers pay more tax, but its percentage is lower compared with their income, with the result that the rural household economy has a strong stamina for growth. With the coming system of "transforming fees into taxes" to be trial-implemented in the rural areas, the pilot experience in Anhui Province is truly important, but comparatively speaking, the practice in Zhejiang is of more immediate significance.
基金financially supported by the National Natural Science Foundation of China(No.41502184)Beijing Natural Science Foundation(No.2164067)+2 种基金National Key Research and Development Program(No.2016YFC0801401)Fundamental Research Funds for the Central Universities(No.2014QL01)Innovation Training Programs for Undergraduate Students(Nos.201411413054 and SKLCRSM14CXJH08)
文摘This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.
文摘The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC system with stator flux hexagon and circle trajectories. The simulation waveforms of flux, torque and current characters with two flux trajectories were given. Experiments were carried out in an AC drive system based on induction motor and two-level inverter. A dual-CPU structure was used and the communication with two CPUs was obtained by a dual-port RAM in this system.
文摘In this paper, the theory and method, obtaining the tomographic determination of three-dimensional velocity structure of the crust by use of the joint inversion of explosion and earthquake data, are given. The velocity distribution of the crust is regarded as a continuous function of the spatial coordinates without parametrization of the velocity model ahead, so that the inversion solution would not be influenced by different parametrization procedures.The expressions of integration kernels, which relates the two kinds of data sets, are also given. The authors have processed the observed data in Tangshan earthquake region by the method proposed in this paper, and obtained the tomographic results of the middle and upper crust structures in this region. The comparison of these results with the result obtained only by the explosion data, has also been made.
文摘An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transformation method is used to establish a geometric model of the observation scene,which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame.Then,an approach for dynamic electromagnetic scattering simulation is proposed.Finally,a fast-computing method based on sparsity in the time domain,space domain,and frequency domain is proposed.The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets.The error between the sparsity-based method and the benchmark is small,proving the effectiveness of the proposed method.