期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Oceanic Plateau Formation Implied by Ontong Java Plateau, Kerguelen Plateau and Shatsky Rise 被引量:3
1
作者 ZHANG Jinchang LUO Yiming CHEN Jie 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第2期351-360,共10页
Oceanic plateaus are a significant type of large igneous provinces in the oceans,providing insights to regional tectonic events and mantle behavior.The three world's largest oceanic plateaus,the Ontong Java Platea... Oceanic plateaus are a significant type of large igneous provinces in the oceans,providing insights to regional tectonic events and mantle behavior.The three world's largest oceanic plateaus,the Ontong Java Plateau,the Kerguelen Plateau and the Shatsky Rise,are representatives in displaying extraordinary fluxes of magma from mantle to lithosphere.Detailed description incorporating transdisciplinary observations on marine geology,geophysics and geochemistry allow us to test the two lively-debated oceanic plateau formation hypotheses(mantle plume and plate boundary models).Predictions from either hypothesis merely obtain partial support.It is therefore unclear to differentiate one model from another one regarding the oceanic plateau formation.Careful comparisons of the three oceanic plateaus show many commonalities and even more differences in their formation and evolution.This diversity signifies one may not be typical of all.Notably,several key common features,i.e.,massive and rapid eruption and near-ridge formation setting,imply that the lithospheric volcanic emplacement of oceanic plateaus was controlled by seafloor spreading despite a mantle plume exists peripherally.If a coincidence of mantle plume and spreading ridge occurs,it may indicate a plume-ridge interaction.One possible mechanism is that spreading ridge is dragged by a plume and migrates to the location of the plume.Another possibility is that the asthenosphere is fed by a plume nearby and generates melting anomalies along the spreading ridge. 展开更多
关键词 large igneous province oceanic plateau Ontong Java plateau Kerguelen plateau Shatsky Rise plume-ridge interaction
下载PDF
A greenstone belt in southeast Tibet:An accreted middle–late Permian oceanic plateau
2
作者 Bin Wang Chao-Ming Xie +3 位作者 Chris Yakymchuk Yong-sheng Dong Yu-hang Song Meng-long Duan 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第3期117-130,共14页
Studies of accreted oceanic plateau sections provide crucial information on their structures,compositions,and origins.We investigate the petrogenesis of ultramafic–mafic rocks in the Tangjia–Sumdo greenstone belt of... Studies of accreted oceanic plateau sections provide crucial information on their structures,compositions,and origins.We investigate the petrogenesis of ultramafic–mafic rocks in the Tangjia–Sumdo greenstone belt of southeast Tibet using petrography,whole-rock geochemistry,and U-Pb zircon geochronology.These rocks are divided into four groups based on geochemical characteristics that include depleted and tholeiitic mafic rocks,transitional mafic rocks,enriched and alkaline mafic rocks,and picritic ultramafic rocks.Depleted and tholeiitic mafic rocks have the oldest crystallization ages(-272 Ma),followed by picritic ultramafic rocks(-270 Ma),transitional mafic rocks(267–254 Ma),and enriched and alkaline mafic rocks(252–250 Ma).Hafnium and neodymium isotope ratios of depleted and tholeiitic mafic rocks(ε_(Hf)(t)=+13.1–+16.9;ε_(Nd)(t)=+6.9–+7.1),transitional mafic rocks(ε_(Hf)(t)=+1.8–+16.9;ε_(Nd)(t)=+0.8–+5.5),enriched and alkaline mafic rocks(ε_(Hf)(t)=+0.5–+5.4;ε_(Nd)(t)=1.5 to+1.9)and picritic ultramafic rocks(ε_(Hf)(t)=+14.9–+17.2;ε_(Nd)(t)=+7.8–+9.0)are similar to those of N-MORB,E-MORB,OIB and depleted-type picritic mafic rocks in other oceanic plateaus,respectively.The geochemical characteristics of the depleted and tholeiitic mafic rocks suggest that they formed by partial melting of depleted spinel lherzolite in a mid-ocean ridge setting,whereas the picritic ultramafic rocks suggest a high degree of partial melting of depleted lherzolite in a hot mantle plume head.The transitional mafic rocks formed by partial melting of moderately enriched garnet lherzolite.The youngest rocks(enriched and alkaline mafic rocks)formed by partial melting of a more enriched garnet lherzolite(compared to transitional mafic rocks)at relatively low temperatures.We propose that the depleted and tholeiitic mafic rocks represent normal oceanic crust of the Sumdo Paleo-Tethys Ocean and the transitional mafic rocks,enriched and alkaline mafic rocks and picritic ultramafic rocks are the fragments of the oceanic plateau,which were related to middle–late Permian mantle plume activity in the Sumdo Paleo-Tethys Ocean.We further suggest that the majority of the Tangjia–Sumdo greenstone belt represents a middle–late Permian oceanic plateau that reflects a previously unrecognized middle–late Permian mantle plume. 展开更多
关键词 oceanic plateau Mantle plume PALEO-TETHYS TIBET Greenstone belts
原文传递
Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma:Implications on the formation of oceanic plateaus and intra-plate seamounts 被引量:17
3
作者 ZHANG Tao 1,2,3,4,LIN Jian 5 & GAO JinYao 3,4 1 Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077,China 2 Graduate University of Chinese Academy of Sciences,Beijing 100049,China +2 位作者 3 The Second Institute of Oceanography,State Oceanic Administrator,Hangzhou 310012,China 4 Key Laboratory of Submarine Geosciences,State Oceanic Administrator,Hangzhou 310012,China 5 Department of Geology and Geophysics,Woods Hole Oceanographic Institution,Woods Hole,MA 02543,USA 《Science China Earth Sciences》 SCIE EI CAS 2011年第8期1177-1188,共12页
This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the So... This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the Southwest Indian Ridge (SWIR) and relevant hotspots on the basis of models of plate reconstruction,and then calculated the corresponding excess magmatic anomalies of the hotspots on the basis of residual bathymetry and Airy isostasy.The results reveal that the activities of the Marion hotspot can be divided into three main phases:interaction with the paleo-Rodrigues triple junction (73.6-68.5 Ma),interaction with the SWIR (68.5-42.7 Ma),and intra-plate volcanism (42.7-0 Ma).These three phases correspond to the formation of the eastern,central,and western parts of the Del Cano Rise,respectively.The magnitude and apparent periodicity of the magmatic volume flux of the Marion hotspot appear to be dominated by the hotspot-ridge distance.The periodicity of the Marion hotspot is about 25 Ma,which is much longer than that of the Hawaii and Iceland hotspots (about 15 Ma). 展开更多
关键词 Southwest Indian Ocean hotspot-ridge interaction magmatic volume flux oceanic plateaus SEAMOUNTS
原文传递
Late Jurassic oceanic plateau subduction in the Bangong-Nujiang Tethyan Ocean of northern Tibet
4
作者 Hao Wu Haiyong Liu +3 位作者 Yu Wang Xijun Liu Qinggao Zeng Panxi Wang 《Geoscience Frontiers》 SCIE CAS 2024年第4期274-289,共16页
Oceanic plateau accretion and subsequent flat-slab subduction in modern convergent settings have profoundly influenced the nature of subduction and mantle dynamics.However,evaluating similar impacts in ancient converg... Oceanic plateau accretion and subsequent flat-slab subduction in modern convergent settings have profoundly influenced the nature of subduction and mantle dynamics.However,evaluating similar impacts in ancient convergent settings,where oceanic plateaus have been subducted but geological records are limited,remains challenging.In this study,we present geochronological and geochemical data for a suite of ore-associated plutonic rocks from the Gaobaoyue area of northern Tibet.These rocks have zircon U-Pb ages of 152-146 Ma,with high Sr contents and Sr/Y and La/Yb ratios,low MgO,Yb,and Y contents,and depleted Sr-Nd-Hf isotopic compositions,consistent with an adakitic affinity that was generated by the partial melting of subducting oceanic crust.We compare the Late Jurassic adakitic magmatism with the spatiotemporal evolution of magmatism in northern Tibet to infer oceanic plateau subduction and subsequent flat-slab subduction in the Bangong-Nujiang Tethyan Ocean.This tectonic model explains(ⅰ)slab-derived adakitic magmatism,(ⅱ)the observed lull in magmatic activity,(ⅲ)intraplate compression and uplift,and(ⅳ)subduction jump and initiation.We also propose that the subduction of heterogeneous oceanic crust(i.e.,buoyant oceanic plateau subduction)provided favorable conditions for tectonic exhumation,vertical slab tearing,and the formation of Cu-Au deposits.Our findings not only have implications for establishing the fundamental process of oceanic plateau accretion in ancient subduction zones but also provide an alternative explanation for Late Jurassic complex tectonomagmatic activity in north-ern Tibet. 展开更多
关键词 Northern Tibet Adakitic magma oceanic plateau Flat-slab subduction Vertical slab tearing
原文传递
Aseismic ridge subduction and flat subduction:Insights from three-dimensional numerical models 被引量:1
5
作者 Hui Zhao Wei Leng 《Earth and Planetary Physics》 EI CSCD 2023年第2期269-281,共13页
Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous t... Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru. 展开更多
关键词 flat subduction aseismic ridge oceanic plateau 3-D numerical simulation
下载PDF
A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton 被引量:8
6
作者 Y.A.Cook I.V.Sanislav +2 位作者 J.Hammerli T.G.Blenkinsop P.H.G.M.Dirks 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第6期911-926,共16页
Mafic rocks comprising tholeiitic pillow basalt, dolerite and minor gabbro form the basal stratigraphic unit in the ca. 2.8 to 2.6 Ga Geita Greenstone Belt situated in the NW Tanzania Craton. They outcrop mainly along... Mafic rocks comprising tholeiitic pillow basalt, dolerite and minor gabbro form the basal stratigraphic unit in the ca. 2.8 to 2.6 Ga Geita Greenstone Belt situated in the NW Tanzania Craton. They outcrop mainly along the southern margin of the belt, and are at least 50 million years older than the supracrustal assemblages against which they have been juxtaposed. Geochemical analyses indicate that parts of the assemblage approach high Mg-tholeiite (more than 8 wt.% MgO). This suite of samples has a restricted compositional range suggesting derivation from a chemically homogenous reservoir. Trace element modeling suggests that the mafic rocks were derived by partial melting within the spinel peridotite field from a source rock with a primitive mantle composition. That is, trace elements maintain primitive mantle ratios (Zr/Hf = 32-35, Ti/Zr - 107-147), producing flat REE and HFSE profles [(La/Yb)pm = 0.9 -1.3], with abundances of 3-10 times primitive mantle and with minor negative anomalies of Nb [(Nb/ La)pm - 0.6-0.8] and Th [(Th/La)pm = 0.6-0.9]. Initial isotope compositions (εNd) range from 1.6 to 2.9 at 2.8 Ga and plot below the depleted mantle line suggesting derivation from a more enriched source compared to present day MORB mantle. The trace element composition and Nd isotopic ratios are similar to the mafic rocks outcropping -50 km south. The mafic rocks outcropping in the Geita area were erupted through oceanic crust over a short time period, between -2830 and-2820 Ma; are compositionally homogenous, contain little to no associated terrigenous sediments, and their trace element composition and short emplacement time resemble oceanic plateau basalts. They have been interpreted to be derived from a plume head with a primitive mantle composition. 展开更多
关键词 Mafic rocks Archean Tanzania Craton Primitive mantle MORB oceanic plateau
下载PDF
Implication of Paleoproterozoic Basalt Fertility Related to Mantle Plume Activity in Nassara Gold Mineralization (Burkina Faso, West Africa)
7
作者 Pascal Ouiya Adama Ouédraogo Yaméogo +1 位作者 Hermann Ilboudo Séta Naba 《Open Journal of Geology》 CAS 2022年第11期1013-1031,共19页
The Birimian Nassara volcanic formations are located south of Gaoua in the southern part of the Boromo belt. Within these formations is the Nassara gold deposit where mineralization is hosted at the contact between ba... The Birimian Nassara volcanic formations are located south of Gaoua in the southern part of the Boromo belt. Within these formations is the Nassara gold deposit where mineralization is hosted at the contact between basaltic volcanic rocks and sedimentary rocks. It is with the aim of understanding the geodynamic context of the basaltic rocks and the implication of their primary gold potential in the Nassara gold deposit that this work is carried out. To achieve our objectives, 28 samples of fresh basaltic rocks were geochemically analyzed for their major and trace element compositions. These analyses show that the Nassara basalts are Fe-rich tholeiitic basalts. Rare earth profiles (La/SmN = 0.75 - 1.50;La/YbN = 0.65 - 2.18) are fairly flat and without europium anomaly (Eu/Eu* = 0.90 - 1.09), nor niobium. In the Zr/Nb vs. Nb/Th and Nb/Y vs. Zr/Y binary diagrams, the Fe-rich tholeiitic basalts of Nassara, as well as those of the Houndé and Boromo belts, are placed in the field of oceanic plateau basalts related to a mantle plume system. A gold fertility test carried out on these basalts was positive. As other studies have already shown, the genetic link between gold deposits and mantle plumes appears to be a general rule. The scenario for the Nassara gold deposit is that it is the source magma that was already more or less enriched in gold and other related elements on its way up. The remobilization of this gold would have occurred during the Eburnean orogeny with the help of metamorphic, hydrothermal and deformation phenomena to be redeposited at the level of shear zones with economic grades. Through this analysis, we show that the fertility of the initial lithologies is very important for the formation of economic size deposits in the proximal shear zones. Exploration work should now integrate this dimension to define the best targets. 展开更多
关键词 Nassara Gold Deposit Fe-Rich Basalt oceanic plateau Mantle Plume Gold Fertility
下载PDF
A Dynamic Study of Ekman Characteristics by Using 1998 SCSMEX and TIPEX Boundary Layer Data 被引量:4
8
作者 张光智 徐祥德 王继志 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期349-356,共8页
A dynamic study on Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data is made. The results are as follows: (1) Similar dynamical Ekman characteristics are observed in the Tibetan Plateau and in t... A dynamic study on Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data is made. The results are as follows: (1) Similar dynamical Ekman characteristics are observed in the Tibetan Plateau and in the South China Sea and its surrounding area. (2) The thickness of the boundary layer is about 2250 m over the Tibetan Plateau, and considering its variation, the thickness could be up to 2250–2750 m. In the tropical southwest Pacific, the thickness of the boundary layer is about 2000 m, and the variation is smaller; a smaller thickness of the boundary layer is in the plain area of the Bohai Sea. (3) Because of the difference in elevation between the Tibetan Plateau and the tropical ocean area, the influence of the boundary layer on the atmosphere is quite different although the two areas have almost the same thickness for the boundary layer, the height where the friction forcing occurs is quite different. (4) The vertical structure of turbulence friction is quite different in the Plateau and in the tropical ocean area. Calculations by 1998 SCSMEX and TIPEX boundary layer data indicate that even in the lowest levels, eddy viscosity in the Tibetan Plateauan can be 2.3 times than in the tropical ocean area. 展开更多
关键词 Ekman characteristics 1998 TIPEX SCSMEX observations comparison of the boundary layer of the Tibetan plateau with the tropical ocean area
下载PDF
Ridge subduction, magmatism, and metallogenesis 被引量:7
9
作者 Qiang WANG Gongjian TANG +7 位作者 Lulu HAO Derek WYMAN Lin MA Wei DAN Xiuzheng ZHANG Jinheng LIU Tongyu HUANG Chuanbing XU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第10期1499-1518,共20页
Modern oceans contain large bathymetric highs(spreading oceanic ridges,aseismic ridges or oceanic plateaus and inactive arc ridges)that,in total,constitute more than 20–30%of the total area of the world’s ocean floo... Modern oceans contain large bathymetric highs(spreading oceanic ridges,aseismic ridges or oceanic plateaus and inactive arc ridges)that,in total,constitute more than 20–30%of the total area of the world’s ocean floor.These bathymetric highs may be subducted,and such processes are commonly referred to as ridge subduction.Such ridge subduction events are not only very common and important geodynamic processes in modern oceanic plate tectonics,they also play an important role in the generation of arc magmatism,material recycling,the growth and evolution of continental crust,the deformation and modification of the overlying plates,and metallogenesis at convergent plate boundaries.Therefore,these events have attracted widespread attention.The perpendicular or high-angle subduction of mid-ocean spreading ridges is commonly characterized by the occurrence of a slab window,and the formation of a distinctive adakite–high-Mg andesite–Nb-enriched basalt-oceanic island basalt(OIB)or a mid-oceanic ridge basalt(MORB)-type rock suite,and is closely associated with Au mineralization.Aseismic ridges or oceanic plateaus are traditionally considered to be difficult to subduct,to typically collide with arcs or continents or to induce flat subduction(low angle of less than 10°)due to the thickness of their underlying normal oceanic crust(>6–7 km)and high topography.However,the subduction of aseismic ridges and oceanic plateaus occurred on both the western and eastern sides of the Pacific Ocean during the Cenozoic.On the eastern side of the Pacific Ocean,aseismic ridges or oceanic plateaus are being subducted flatly or at low angles beneath South and Central American continents,which may cause a magmatic gap.But slab melting can occur and adakites,or an adakite–high-Mg andesite–adakitic andesite–Nb-enriched basalt suite may be formed during the slab rollback or tearing.Cu-Au mineralization is commonly associated with such flat subduction events.On the western side of the Pacific Ocean,however,aseismic ridges and oceanic plateaus are subducted at relatively high angles(>30°).These subduction processes can generate large scale eruptions of basalts,basaltic andesites and andesites,which may be derived from fractional crystallization of magmas originating from the subduction zone fluid-metasomatized mantle wedge.In addition,some inactive arc ridges are subducted beneath Southwest Japan,and these subduction processes are commonly associated with the production of basalts,high-Mg andesites and adakites and Au mineralization.Besides magmatism and Cu-Au mineralization,ridge subduction may also trigger subduction erosion in subduction zones.Future frontiers of research will include characterizing the spatial and temporal patterns of ridge subduction events,clarifying the associated geodynamic mechanisms,quantifying subduction zone material recycling,establishing the associated deep crustal and mantle events that generate or influence magmatism and Cu-Au mineralization,establishing criteria to recognize pre-Cenozoic ridge subduction,the onset of modernstyle plate tectonics and the growth mechanisms for Archean continental crust. 展开更多
关键词 Spreading mid ocean ridge Aseismic ridge oceanic plateau Inactive arc ridge SUBDUCTION MAGMATISM Metal minerlization Crustal growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部