New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed t...New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.展开更多
The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^...The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.展开更多
Optimized calculations of 75 PCDDs and their parent DD were carded out at the B3LYP/6-31G* level by density functional theory (DFT) method. The structural parameters were obtained and significant correlation betwee...Optimized calculations of 75 PCDDs and their parent DD were carded out at the B3LYP/6-31G* level by density functional theory (DFT) method. The structural parameters were obtained and significant correlation between the C1 substitution position and some structural parameters was found. Consequently, the number of C1 substitution positions was taken as theoretical descriptors to establish two novel QSPR models for predicting lgKow and -lgSw of all PCDD congeners. The two models achieved in this work contain two variables (Na and Nβ), of which r = 0.9312, 0.9965 and SD = 0.27, 0.12 respectively, and t values are all large. The variation inflation factors (VIF) of variables in the two models herein are both less than 5.0, suggesting high accuracy of the lgKow and -lgSw predicting models, and the results of cross-validation test also show that the two models exhibit optimum stability and good predictive power. By comparison, the correlation and predictive ability of the present work are more advantageous than those obtained using semi-empirical AM1 and GC-RI methods.展开更多
Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0...Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0 program, the correlation equations that can predict n-octanol/water partition coefficient (lgKow) were developed using the structural and thermodynamic parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxylates with experimental data of lgKow as theoretical descriptors; the correlation coefficient (R^2) was 0.9452 and the cross-validation squared correlation coefficient (Rcv^2) 0.9312. Furthermore, a four-variable model from MEDV was obtained, of which R2 = 0.9497 and Rov^2 =0.9388. The models were validated by variance inflation factor (VIF) and t-test. Cross-validation indicates that the correlation and predicting ability of the model based on both DFT method and MEDV are more advantageous than those obtained from semi-empirical AM1 method.展开更多
Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, ...Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting n-octanol/water partition coefficients (lgKow) of OPs. The new model achieved in this work contains three variables, i.e., molecular volume (Vm), dipole moment of the molecules (μ) and enthalpy (H^0). For this model, R^2 = 0.9167 and SD = 0.31 at large t values. In addition, the variation inflation factors (VIF) of variables are all close to 1.0, suggesting high accuracy of the predicting model. And the results of cross-validation test (q^2 = 0.8993) and method validation also showed the model of this study exhibited optimum stability and better predictive power than that from semi-empirical method. The model achieved can be used to predict IgKow of congeneric compounds.展开更多
Structural parameters of 24 substituted naphthalin compounds were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of octanol/water partition coefficient (lgKow), three-para...Structural parameters of 24 substituted naphthalin compounds were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of octanol/water partition coefficient (lgKow), three-parameter (energy of the highest occupied molecular orbital (EHOMO), the most positive, atomic net charges of molecule (q^+) and molecular average polarizability (α)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, lgKow dependent equation calculated at the HF/6-311G^** level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods and used to predict lgKow of eight designed compounds. Upon comparison, the predictive abilities of our work are all more advantageous than those calculated from molecular property calculator program.展开更多
Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were...Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were performed to estimate and predict the lgK ow of substituted anilines. 2D method (multiple linear regression, MLR) and 3D method (comparative molecular field analysis, CoMFA) were applied in this study. Successful 2D and 3D models yielded the correlation coefficient (R2) values of 0.981 and 0.966 and the Leave-One-Out (LOO) cross-validated correlation coefficient (q2) values of 0.933 and 0.820, respectively. The developed models have a highly predictive ability in both internal and external validation. In addition, the results were interpreted in terms of physical and chemical meanings of descriptors and field contribution maps. It showed that the steric and electrostatic properties are the primary factors that govern the lgK ow of substituted anilines. The information obtained from the QSPR models would be helpful to the interpretation of structural features pertinent to the lgK ow of substituted anilines, which may be helpful in estimating the organic compounds' potential harm to the environment.展开更多
A shake-flask method was used to determine 1-octanol/water partition coefficients of ofloxacin, norfloxacin, lomefloxacin, ciprofloxacin, pefloxacin and pipemidic acid from 293.15 K to 323.15 K. The results show that ...A shake-flask method was used to determine 1-octanol/water partition coefficients of ofloxacin, norfloxacin, lomefloxacin, ciprofloxacin, pefloxacin and pipemidic acid from 293.15 K to 323.15 K. The results show that 1-octanol/water partition coefficient of each quinolone increased with the increase of temperature. Based on the fluid phase equilibrium theory, the thermodynamic relationship of 1-octanol/water partition coefficient depending on the temperature was proposed, and the changes of enthalpy, entropy, and Gibbs free energy for quinolones partitioning in 1-octanol/water were determined, respectively. Quinolones molecules partitioning in 1-octanol/water was mainly an entropy driving process, during which the order degree of system decreased. The temperature effects of 1-octanol/water partition coefficient were investigated. The results show that its magnitude is the same as the values in the literature.展开更多
Optimized calculation of dibenzofuran (DF) and 135 polychlorinated dibenzofurans (PCDFs) was carried out at the B3LYP/6-31G* level in GAUSSIAN 98 program. Based on the theoretical linear solvation energy relation...Optimized calculation of dibenzofuran (DF) and 135 polychlorinated dibenzofurans (PCDFs) was carried out at the B3LYP/6-31G* level in GAUSSIAN 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained structural parameters were taken as theoretical descriptors to establish the novel quantitative structureproperty relationship (QSPR) model for predicting n-octanol/water partition coefficients (lgKow) of PCDFs. The new model of lgKow achieved in this work contains three variables: energy of the highest occupied molecular orbital (EHOMO), the most negative atomic partial charge (q^-) and average molecular polarizability (a), of which R^2= 0.9011 and SD = 0,17 with larger t values. In addition, the variation inflation factors (VIF) of variables in the present model are all less than 5.5, suggesting high accuracy of the lgKow model. And the results of cross-validation test (q^2 = 0.8688) and method validation also show this model exhibits optimum stability and better predictive power than semi-empirical method. At the same time, it is found that the aqueous solubility (-lgSw) has high relative correlation with constant volume molar heat capacity (Cv^0), of which R^2 = 0.9777 and SD = 0.22. Moreover, lgKow and -lgSw values of all PCDF congeners were predicted respectively.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At presen...The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H...The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer ...Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.展开更多
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th...The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.展开更多
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i...This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.展开更多
To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and ...To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.展开更多
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic...Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.展开更多
基金supported by the Youth Foundation of Education Bureau,Sichuan Province(13ZB0003)
文摘New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)
文摘The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)(2003CB415002)China Postdoctoral Science Foundation (No. 2003033486)
文摘Optimized calculations of 75 PCDDs and their parent DD were carded out at the B3LYP/6-31G* level by density functional theory (DFT) method. The structural parameters were obtained and significant correlation between the C1 substitution position and some structural parameters was found. Consequently, the number of C1 substitution positions was taken as theoretical descriptors to establish two novel QSPR models for predicting lgKow and -lgSw of all PCDD congeners. The two models achieved in this work contain two variables (Na and Nβ), of which r = 0.9312, 0.9965 and SD = 0.27, 0.12 respectively, and t values are all large. The variation inflation factors (VIF) of variables in the two models herein are both less than 5.0, suggesting high accuracy of the lgKow and -lgSw predicting models, and the results of cross-validation test also show that the two models exhibit optimum stability and good predictive power. By comparison, the correlation and predictive ability of the present work are more advantageous than those obtained using semi-empirical AM1 and GC-RI methods.
基金Supported by the Key Program of National Natural Science Foundation of China (No. 20737001)the National Science Foundation for Post-doctoral Scientists of China (No. 2003033486)
文摘Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0 program, the correlation equations that can predict n-octanol/water partition coefficient (lgKow) were developed using the structural and thermodynamic parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxylates with experimental data of lgKow as theoretical descriptors; the correlation coefficient (R^2) was 0.9452 and the cross-validation squared correlation coefficient (Rcv^2) 0.9312. Furthermore, a four-variable model from MEDV was obtained, of which R2 = 0.9497 and Rov^2 =0.9388. The models were validated by variance inflation factor (VIF) and t-test. Cross-validation indicates that the correlation and predicting ability of the model based on both DFT method and MEDV are more advantageous than those obtained from semi-empirical AM1 method.
基金the State Science Foundation of China (No. 20477018)
文摘Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting n-octanol/water partition coefficients (lgKow) of OPs. The new model achieved in this work contains three variables, i.e., molecular volume (Vm), dipole moment of the molecules (μ) and enthalpy (H^0). For this model, R^2 = 0.9167 and SD = 0.31 at large t values. In addition, the variation inflation factors (VIF) of variables are all close to 1.0, suggesting high accuracy of the predicting model. And the results of cross-validation test (q^2 = 0.8993) and method validation also showed the model of this study exhibited optimum stability and better predictive power than that from semi-empirical method. The model achieved can be used to predict IgKow of congeneric compounds.
基金the China Post Doctoral Research Fund (No. 2003033486)
文摘Structural parameters of 24 substituted naphthalin compounds were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of octanol/water partition coefficient (lgKow), three-parameter (energy of the highest occupied molecular orbital (EHOMO), the most positive, atomic net charges of molecule (q^+) and molecular average polarizability (α)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, lgKow dependent equation calculated at the HF/6-311G^** level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods and used to predict lgKow of eight designed compounds. Upon comparison, the predictive abilities of our work are all more advantageous than those calculated from molecular property calculator program.
基金Supported by the NNSF of China (No. 20737001)Program for Environment Protection in Jiangsu Province (201140)
文摘Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were performed to estimate and predict the lgK ow of substituted anilines. 2D method (multiple linear regression, MLR) and 3D method (comparative molecular field analysis, CoMFA) were applied in this study. Successful 2D and 3D models yielded the correlation coefficient (R2) values of 0.981 and 0.966 and the Leave-One-Out (LOO) cross-validated correlation coefficient (q2) values of 0.933 and 0.820, respectively. The developed models have a highly predictive ability in both internal and external validation. In addition, the results were interpreted in terms of physical and chemical meanings of descriptors and field contribution maps. It showed that the steric and electrostatic properties are the primary factors that govern the lgK ow of substituted anilines. The information obtained from the QSPR models would be helpful to the interpretation of structural features pertinent to the lgK ow of substituted anilines, which may be helpful in estimating the organic compounds' potential harm to the environment.
基金Supported by the Natural Science Foundation of Henan Province,China(No.0611033400)
文摘A shake-flask method was used to determine 1-octanol/water partition coefficients of ofloxacin, norfloxacin, lomefloxacin, ciprofloxacin, pefloxacin and pipemidic acid from 293.15 K to 323.15 K. The results show that 1-octanol/water partition coefficient of each quinolone increased with the increase of temperature. Based on the fluid phase equilibrium theory, the thermodynamic relationship of 1-octanol/water partition coefficient depending on the temperature was proposed, and the changes of enthalpy, entropy, and Gibbs free energy for quinolones partitioning in 1-octanol/water were determined, respectively. Quinolones molecules partitioning in 1-octanol/water was mainly an entropy driving process, during which the order degree of system decreased. The temperature effects of 1-octanol/water partition coefficient were investigated. The results show that its magnitude is the same as the values in the literature.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2003033486)
文摘Optimized calculation of dibenzofuran (DF) and 135 polychlorinated dibenzofurans (PCDFs) was carried out at the B3LYP/6-31G* level in GAUSSIAN 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained structural parameters were taken as theoretical descriptors to establish the novel quantitative structureproperty relationship (QSPR) model for predicting n-octanol/water partition coefficients (lgKow) of PCDFs. The new model of lgKow achieved in this work contains three variables: energy of the highest occupied molecular orbital (EHOMO), the most negative atomic partial charge (q^-) and average molecular polarizability (a), of which R^2= 0.9011 and SD = 0,17 with larger t values. In addition, the variation inflation factors (VIF) of variables in the present model are all less than 5.5, suggesting high accuracy of the lgKow model. And the results of cross-validation test (q^2 = 0.8688) and method validation also show this model exhibits optimum stability and better predictive power than semi-empirical method. At the same time, it is found that the aqueous solubility (-lgSw) has high relative correlation with constant volume molar heat capacity (Cv^0), of which R^2 = 0.9777 and SD = 0.22. Moreover, lgKow and -lgSw values of all PCDF congeners were predicted respectively.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
文摘The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金financial support of the National Natural Science Foundation of China(U21A20218 and 32101857)the‘Double First-Class’Key Scientific Research Project of Education Department in Gansu Province,China(GSSYLXM-02)+1 种基金the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx03Y10)the“Innovation Star”Program of Graduate Students in 2023 of Gansu Province,China(2023CXZX681)。
文摘The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52304044,52222402,52234003,52174036)Sichuan Science and Technology Program(Nos.2022JDJQ0009,2023NSFSC0934)+2 种基金Key Technology R&D Program of Shaanxi Province(2023-YBGY-30)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030202)the China Postdoctoral Science Foundation(Grant No.2022M722638)。
文摘Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.
基金supported by the Second Comprehensive Scientific Research Survey on the Tibetan Plateau[grant number 2019QZKK0103]the National Natural Science Foundation of China[grant numbers 42375071 and 42230610].
文摘The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.
基金National Key Research and Development Program of China(2021YFC2902103)National Natural Science Foundation of China(51934001)Fundamental Research Funds for the Central Universities(2023JCCXLJ02).
文摘This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.
基金The financial support from the National Natural Science Foun-dation of China(Grant Nos.52074299 and 41941018)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)are gratefully acknowledged.
文摘To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.
基金supported by the National Key Research and Development Program(No.2022YFB4202200)the Fundamental Research Funds for the Central Universities.
文摘Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.