With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors...With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.展开更多
Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor rese...Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor resection cavity. The MPB-NO@DOX + ATRA gel was fabricated by mixing a thrombin solution, a fibrinogen solution containing all-trans retinoic acid (ATRA), and a Mn/NO-based immune nano-activator termed MPB-NO@DOX. ATRA promoted the differentiation of cancer stem cells, inhibited cancer cell migration, and affected the polarization of tumor-associated macrophages. The outer MnO2 shell disintegrated due to its reaction with glutathione and hydrogen peroxide in the cytoplasm to release Mn2+ and produce O2, resulting in the release of doxorubicin (DOX). The released DOX entered the nucleus and destroyed DNA, and the fragmented DNA cooperated with Mn2+ to activate the cGAS-STING pathway and stimulate an anti-tumor immune response. In addition, when MPB-NO@DOX was exposed to 808 nm laser irradiation, the Fe-NO bond was broken to release NO, which downregulated the expression of PD-L1 on the surface of tumor cells and reversed the immunosuppressive tumor microenvironment. In conclusion, the MPB-NO@DOX + ATRA gel exhibited excellent anti-tumor efficacy. The results of this study demonstrated the great potential of in situ injectable hydrogels in preventing postoperative tumor recurrence.展开更多
AT-rich interactive domain 5a (Arid5a) is a member of the arid family of proteins, which contain a helix-turn-helix domain and an ability to bind to nucleic acids. Current evidence suggests that Arid5a performs dual f...AT-rich interactive domain 5a (Arid5a) is a member of the arid family of proteins, which contain a helix-turn-helix domain and an ability to bind to nucleic acids. Current evidence suggests that Arid5a performs dual functions as a transcription factor and an RNA-binding protein in immune, nonimmune, and/ or tumor cells depending on its cellular localization. The contribution of Arid5a to the development of inflammation, autoimmunity, and obesity through its transcriptional and posttranscriptional regulatory functions has broadly been reviewed. Recent studies have indeed revealed an association of Arid5a with cancers, including breast, pancreatic, colorectal, and lung cancers and glioma. Notably, Arid5a affects various aspects of cellular homeostasis, including invasion, metastasis, epithelial-to-mesenchymal transition, immune evasion, adipogenesis and M1-like tumor-associated macrophage (TAM)-to-M2-like TAM transition. This review aims to summarize current knowledge of Arid5a from a cancer perspective and highlights recent advances in Arid5a-related cancer research. This review may improve the understanding of Arid5a-mediated molecular mechanisms and their relevance to cancers.展开更多
文摘With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
基金supported by the National Natural Science Foundation of China(No.82003298)the Scientiffc and Technological Project of Henan Province(No.232102310392)+5 种基金the Key Research and Development Projects of Henan Province(No.222102310453,212102311025)Postdoctoral Research Grant in Henan Province(No.201901025)the Key Research Project of Henan Higher Education Institutions(No.18A350003)Open Fund of Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases,Henan Province(No.NMZL2020102)the Natural Science Foundation of Chongqing(No.cstc2019jcyj-msxmX0035)the Scientiffc Research Seedling Project of Chongqing Medicinal Biotechnology Association(No.cmba2022kyym-zkxmQ0009).
文摘Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor resection cavity. The MPB-NO@DOX + ATRA gel was fabricated by mixing a thrombin solution, a fibrinogen solution containing all-trans retinoic acid (ATRA), and a Mn/NO-based immune nano-activator termed MPB-NO@DOX. ATRA promoted the differentiation of cancer stem cells, inhibited cancer cell migration, and affected the polarization of tumor-associated macrophages. The outer MnO2 shell disintegrated due to its reaction with glutathione and hydrogen peroxide in the cytoplasm to release Mn2+ and produce O2, resulting in the release of doxorubicin (DOX). The released DOX entered the nucleus and destroyed DNA, and the fragmented DNA cooperated with Mn2+ to activate the cGAS-STING pathway and stimulate an anti-tumor immune response. In addition, when MPB-NO@DOX was exposed to 808 nm laser irradiation, the Fe-NO bond was broken to release NO, which downregulated the expression of PD-L1 on the surface of tumor cells and reversed the immunosuppressive tumor microenvironment. In conclusion, the MPB-NO@DOX + ATRA gel exhibited excellent anti-tumor efficacy. The results of this study demonstrated the great potential of in situ injectable hydrogels in preventing postoperative tumor recurrence.
基金This work was supported by the Advanced Postdoc Program and the Kishimoto foundation at the Immunology Frontier Research Center,Osaka University,Japan.
文摘AT-rich interactive domain 5a (Arid5a) is a member of the arid family of proteins, which contain a helix-turn-helix domain and an ability to bind to nucleic acids. Current evidence suggests that Arid5a performs dual functions as a transcription factor and an RNA-binding protein in immune, nonimmune, and/ or tumor cells depending on its cellular localization. The contribution of Arid5a to the development of inflammation, autoimmunity, and obesity through its transcriptional and posttranscriptional regulatory functions has broadly been reviewed. Recent studies have indeed revealed an association of Arid5a with cancers, including breast, pancreatic, colorectal, and lung cancers and glioma. Notably, Arid5a affects various aspects of cellular homeostasis, including invasion, metastasis, epithelial-to-mesenchymal transition, immune evasion, adipogenesis and M1-like tumor-associated macrophage (TAM)-to-M2-like TAM transition. This review aims to summarize current knowledge of Arid5a from a cancer perspective and highlights recent advances in Arid5a-related cancer research. This review may improve the understanding of Arid5a-mediated molecular mechanisms and their relevance to cancers.